

ROHINI COLLEGE OF ENGINEERNG AND TECHNOLOGY

EC8074- ROBOTICS AND AUTOMATION

Unit IV Navigation, Path Planning and Control Architecture

4.1 Localization and Navigation

Robot localization is the process of determining where a mobile robot is

located with respect to its environment. Localization is one of the most

fundamental competencies required by an autonomous robot as the knowledge

of the robot's own location is an essential precursor to making decisions about

future actions.

Encoder: an encoder is a sensing device that provides feedback. Encoders

convert motion to an electrical signal that can be read by some type of control

device in a motion control system, such as a counter or PLC. The encoder sends

a feedback signal that can be used to determine position, count, speed, or

direction. A control device can use this information to send a command for a

particular function.

Position prediction:

The robot then collects actual sensor data and extracts appropriate features (e.g.

lines, doors, or even the value of a specific sensor) in the observation step. At

the same time, based on its predicted position in the map, the robot generates a

measurement prediction which identifies the features that therobot expects to

find and the positions of those features.

Observation:

The observation is the result of a feature extraction process executed on the raw

sensor data.

Matching:

In matching the robot identifies the best pairings between the features actually

extracted during observation and the expected features due to measurement

prediction

The parameters of the features are usually specified in the sensor frame and

ROHINI COLLEGE OF ENGINEERNG AND TECHNOLOGY

EC8074- ROBOTICS AND AUTOMATION

therefore in a local reference frame of the robot. However, for matching we

need to represent the observations and measurement predictions in the same

frame.

Estimation:

Next we compute the best estimate of the robot’s position based on the position

prediction and all the observations.There are two methods for prediction of

position;

Odometry : Use wheel sensors to update position

Dead Reckoning: Use wheel sensors and heading sensor to update

position Odometry Error Sources:

 Limited resolution during integration

 Unequal wheel diameter

 Variation in the contact point of the wheel

 Unequal floor contact and variable friction can lead to slipping

 Deterministic errors can be eliminated through proper calibration

Non-deterministic errors have to be described by error models and will

always lead to uncertain position estimate.

From a geometric point of view one can classify the errors into three types:

• Range error:integrated path length (distance) of the robots movement ->

sum of the wheel movements

• Turn error: similar to range error, but for turns -> difference of the wheel

motions

• Drift error: difference in the error of the wheels leads to an error in the

robot’s angular orientation

ROHINI COLLEGE OF ENGINEERNG AND TECHNOLOGY

EC8074- ROBOTICS AND AUTOMATION

In navigation, dead reckoning is the process of calculating one's current

position by using a previously determined position, or fix, and advancing that

position based upon known or estimated speeds over elapsed time and course.

 Heading sensors can be proprioceptive (gyroscope, inclinometer) or

exteroceptive (compass).

 Used to determine the robots orientation and inclination.

 Allow, together with an appropriate velocity information, to integrate

the movement to an position estimate.

This procedure is called dead reckoning (ship navigation)

4.2 Probabilistic based Localization

There are two classes of probabilistic localization.

The first class, Markov localization, uses an explicitly specified probability

distribution across all possible robots positions.

The second method, Kalman filter localization, uses a Gaussian probability

density representation of robot position and scan matching for localization.

Unlike Markov localization, Kalman filter localization does not

independently consider each possible pose in the robot’s configuration space.

Markov localization allows for localization starting from any unknown

position and can thus recover from ambiguous situations because the robot

can track multiple, completely disparate possible positions. However, to

update the probability of all positions within the whole state space at any time

requires a discrete representation of the space (grid). The required memory

and computational power can thus limit precision and map size.

 Kalman filter localization tracks the robot from an initially known position

https://en.wikipedia.org/wiki/Navigation
https://en.wikipedia.org/wiki/Fix_(position)

ROHINI COLLEGE OF ENGINEERNG AND TECHNOLOGY

EC8074- ROBOTICS AND AUTOMATION

and is inherently both precise and efficient. In particular, Kalman filter

localization can be used in continuous world representations. However, if the

uncertainty of the robot becomes too large (e.g. due to a robot collision with

an object) and thus not truly unimodal, the Kalman filter can fail to capture the

multitude of possible robot positions and can become irrevocably lost.

The key difference between the Kalman filter approach and our earlier

Markov localization approach lies in the perception update process. In

Markov localization, the entire perception,i.e. the robot’s set of instantaneous

sensor measurements, is used to update each possible robot position in the

belief state individually using Bayes formula. In some cases, the perception is

abstract, having been produced by a feature extraction mechanism as in

Dervish. In other cases, as with Rhino, the perception consists of raw sensor

readings. By contrast, perception update using a Kalman filter is a multi-step

process. The robot’s total sensory input is treated, not as a monolithic whole,

but as a set of extracted features that each relate to objects in the environment.

Given a set of possible features, the Kalman filter is used to fuse the distance

estimate from each feature to a matching object in the map. Instead of

carrying out this matching process for many possible robot locations

individually as in the Markov approach, the Kalman filter accomplishes the

same probabilistic update by treating the whole, unimodal and Gaussian

belief state at once.

4.3 NAVIGATION:

The specific aspect of cognition directly linked to robust mobility is

navigation competence. Given partial knowledge about its environment and a

goal position or series of positions, navigation encompasses the ability of the

robot to act based on its knowledge and sensor values so as to reach its goal

positions as efficiently and as reliably as possible

ROHINI COLLEGE OF ENGINEERNG AND TECHNOLOGY

EC8074- ROBOTICS AND AUTOMATION

Localization versus Navigation:

In creating a navigation system, it is clear that the mobile robot will need

sensors and a motion control system. Sensors are absolutely required to avoid

hitting moving obstacles such as humans, and some motion control system is

required so that the robot can deliberately move.

Two methods of Navigation:

Behavior based Community:

An alternative, espoused by the behavior-based community, suggests that,

since sensors and effectors are noisy and information-limited, one should

avoid creating a geometric map for localization.

This approach avoids explicit reasoning about localization and position, and

thus generally avoids explicit path planning as well.

This technique is based on a belief that there exists a procedural solution to

the particular navigation problem at hand. For example, in Fig. 4.1, the

behavioralistic approach to navigating from Room A to Room B might be to

design a left-wall-following behavior and a detector for Room B that is

triggered by some unique queue in Room B, such as the color of the carpet.

Then, the robot can reach Room B by engaging the left wall follower with the

Room B detector as the termination condition for the program

ROHINI COLLEGE OF ENGINEERNG AND TECHNOLOGY

EC8074- ROBOTICS AND AUTOMATION

Fig.4.1 A Sample environment

Fig. 4.2 An Architecture for Behaviour based (Model based) Navigation

The architecture of this solution to a specific navigation problem is shown in

figure 4.2. The key advantage of this method is that, when possible, it may be

implemented very quickly for a single environment with a small number of

goal positions.

It suffers from some disadvantages, however. First, the method does not

directly scale to other environments or to larger environments. Often, the

navigation code is location-specific, and the same degree of coding and

ROHINI COLLEGE OF ENGINEERNG AND TECHNOLOGY

EC8074- ROBOTICS AND AUTOMATION

debugging is required to move the robot to a new environment.

In contrast to the behavior-based approach, the map-based approach

includes both localization and cognition modules (see Fig. 4.3). In map-based

navigation, the robot explicitly attempts to localize by collecting sensor data,

then updating some belief about its position with respect to a map of the

environment. The key advantages of the map-based approach for navigation

are as follows:

• The explicit, map-based concept of position makes the system’s belief

about position transparently available to the human operators.

• The existence of the map itself represents a medium for communication

between human and robot: the human can simply give the robot a new map if

the robot goes to a new environment.

Fig. 4.3 An Architecture for Map based (Model based) Navigation

The map, if created by the robot, can be used by humans as well, achieving two

uses. The map-based approach will require more up-front development effort to

create a navigating mobile robot.

ROHINI COLLEGE OF ENGINEERNG AND TECHNOLOGY

EC8074- ROBOTICS AND AUTOMATION

4.4 Simultaneous Localization and Mapping (SLAM)

The simultaneous localization and mapping (SLAM) problem asks if it is

possible for a mobile robot to be placed at an unknown location in an unknown

environment and for the robot to incrementally build a consistent map of this

environment while simultaneously determining its location within this map. A

solution to the SLAM problem has been seen as a “holy grail” for the mobile

robotics community as it would provide the means to make a robot truly

autonomous.

The “solution” of the SLAM problem has been one of the notable successes of

the robotics community over the past decade. SLAM has been formulated and

solved as a theoretical problem in a number of different forms. SLAM has also

been implemented in a number of different domains from indoor robots to

outdoor, underwater, and airborne systems. At a theoretical and conceptual

level, SLAM can now be considered a solved problem. However, substantial

issues remain in practically realizing more general SLAM solutions and notably in

building and using perceptually rich maps as part of a SLAM algorithm.

Formulation and Structure of the SLAM Problem

SLAM is a process by which a mobile robot can build a map of an

environment and at the same time use this map to deduce its location. In

SLAM, both the trajectory of the platform and the location of all landmarks are

estimated online without the need for any a priori knowledge of location.

ROHINI COLLEGE OF ENGINEERNG AND TECHNOLOGY

EC8074- ROBOTICS AND AUTOMATION

SLAM problem. A simultaneous estimate of both robot and landmark locations is required. The true locations are

never known or measured directly. Observations are made between true robot and landmark locations.

Preliminaries

Consider a mobile robot moving through an environment taking relative

observations of a number of unknown landmarks using a sensor located on the

robot as shown in above Figure. At a time instant k, the following quantities are

defined:

◆ xk: the state vector describing the location and orientation of the vehicle

◆ uk: the control vector, applied at time k − 1 to drive the vehicle to a state xk at

time k

mi: a vector describing the location of the ith landmark whose true location is

assumed time invariant

◆ zik : an observation taken from the vehicle of the location of the ith landmark

at time k. When there are multiple landmark observations at any one time or

when the specific landmark is not relevant to the discussion, the observation

will be written simply as zk.

In addition, the following sets are also defined:

◆ X0:k = {x0, x1, · · · , xk} = {X0:k−1, xk}: the history of vehicle locations

◆ U0:k = {u1, u2, · · · , uk} = {U0:k−1, uk}: the history of control inputs

◆ m = {m1,m2, · · · ,mn} the set of all landmarks

ROHINI COLLEGE OF ENGINEERNG AND TECHNOLOGY

EC8074- ROBOTICS AND AUTOMATION

− |

◆ Z0:k = {z1, z2, · · · , zk} = {Z0:k−1, zk} : the set of all landmark

observations.

Probabilistic SLAM

In probabilistic form, the simultaneous localization and map building (SLAM)

problem requires that the probability distribution

P(xk, m|Z0:k, U0:k, x0) (1)

be computed for all times k. This probability distribution describes the joint

posterior density of the landmark locations and vehicle state (at time k) given

the recorded observations and control inputs up to and including time k

together with the initial state of the vehicle. In general, a recursive solution to

the SLAM problem is desirable. Starting with an estimate

for the distribution P(xk−1, m Z0:k−1, U0:k−1) at time k-1, the joint

posterior, following a control uk and observation zk, is computed using Bayes

theorem. This computation requires that a state transition model and an

observation model are defined describing the effect of the control input and

observation respectively.

The observation model describes the probability of making an observation zk

when the vehicle location and landmark locations are known and is generally

described in the form

 P(zk|xk, m). (2)

It is reasonable to assume that once the vehicle location and map are defined,

observations are conditionally independent given the map and the current

vehicle state.

The motion model for the vehicle can be described in terms of a probability

distribution on state transitions in the form

ROHINI COLLEGE OF ENGINEERNG AND TECHNOLOGY

EC8074- ROBOTICS AND AUTOMATION

 P(xk|xk−1, uk) (3)

That is, the state transition is assumed to be a Markov process in which the next

state xk depends only on the immediately preceding state xk−1 and the applied

control uk and is independent of both the observations and the map.

The SLAM algorithm is now implemented in a standard two-step recursive

(sequential) prediction (time-update) correction (measurement-update) form:

Equations (4) and (5) provide a recursive procedure for calculating the joint

posterior P(xk,m|Z0:k,U0:k, x0) for the robot state xk and map m at a time k

based on all observations Z0:k and all control inputs U0:k up to and including

time k. The recursion is a function of a vehicle model P(xk|xk−1, uk) and an

observation model P(zk|xk,m).

It is worth noting that the map building problem may be formulated as

computing the conditional density P(m|X0:k,Z0:k,U0:k). This assumes that the

location of the vehicle xk is known (or at least deterministic) at all times,

ROHINI COLLEGE OF ENGINEERNG AND TECHNOLOGY

EC8074- ROBOTICS AND AUTOMATION

subject to knowledge of initial location. A map m is then constructed by fusing

observations from different locations.

Conversely, the localization problem may be formulated as computing the

probability distribution P (xk|Z0: k,U0:k,m). This assumes that the landmark

locations are known with certainty, and the objective is to compute an estimate

of vehicle location with respect to these landmarks.

Solutions to the SLAM Problem

Solutions to the probabilistic SLAM problem involve finding an appropriate

representation for both the observation model (2) and motion model (3) that

allows efficient and consistent computation of the prior and posterior

distributions in (4) and (5). By far, the most common representation is in the

form of a state-space model with additive Gaussian noise, leading to the use of

the extended Kalman filter (EKF) to solve the SLAM problem. One important

alternative representation is to describe the vehicle motion model in (3) as a set

of samples of a more general non- Gaussian probability distribution. This leads

to the use of the Rao-Black wellized particle filter, or Fast SLAM algorithm, to

solve the SLAM problem. While EKF-SLAM and Fast SLAM are the two most

important solution methods, newer alternatives, which offer much potential,

have been proposed, including the use of the information-state form.

4.5 Optimization Algorithms for Robot Navigation

There are many different types of navigation algorithms that a robot may

use to traverse space. Often these algorithms have similar processes but

differ only slightly in different situations. For example, when a robot hits a

dead end, where does it go next? Two different algorithms could have

gotten the robot there using the exact same path, but differ by how they

choose the next step.

ROHINI COLLEGE OF ENGINEERNG AND TECHNOLOGY

EC8074- ROBOTICS AND AUTOMATION

Another way two algorithms could differ is in how they choose the path

back to the original start state after it has found the goal.

There to be three specific situations where there is a major difference

between navigation algorithms when choosing a path. Because of these

situations, we chose to split the algorithms into three different steps.

The first step deals with the generic situation, how to begin and continue

the traversal of unknown space. This step chooses which one of the

neighboring cells to visit.

The second situation is used when the first situation cannot pick an

unvisited cell to visit. This occurs when either, all the adjacent unvisited

cells are blocked by walls, or if all the adjacent cells have already been

visited. At this point, a decision needs to be made by the robot. It needs to

choose a path to continue its search of the unknown environment.

The third step is when the robot has found the goal and needs to proceed

back to the initial starting point. There are several different ways that the

robot may choose to return to the origin.

There are several algorithms implemented for each of the steps. For the first

step there are two different algorithms. One is called “Follow the Right

Wall.” This consists of the robot following a wall similarly to a person walking

along a path with their hand always touching the wall on that side. A wall can

be substituted with a cell that has already been visited.

 The second algorithm implemented for the first step is called “Right Left

Sweep.” This algorithm is similar to “Follow the Right Wall” except when

the robot enters a cell that is adjacent to a boundary wall, the direction

switches. For example, if the robot is currently following the right wall and

enters a cell with a boundary wall the robot would start following the left

ROHINI COLLEGE OF ENGINEERNG AND TECHNOLOGY

EC8074- ROBOTICS AND AUTOMATION

wall. This would continue until it enters another cell that is bordered by a

boundary wall.

The implemented algorithms for the second step are as follows. The first

implementation is called “Find Closest Unvisited Cell.” This algorithm will

consider the cells the robot has not yet been in, and pick the one that is

closest to the robot. The second algorithm is “Find Closest Unvisited Cell

to Start.” This is similar to the first algorithm except that the base reference

point is the start instead of the robot’s current position.

The third algorithmic step, returning to the start after finding the goal, also has

multiple implementations. The first implementation is “Assume No Walls.”

This is an optimistic path finding algorithm that will plot a path back to the

start assuming that all unknown potential walls will not have walls. If a wall is

found along the return path, a new path needs to be calculated. The second is

“Assume Walls.” This is a pessimistic algorithm that will plot a path back to

the start using only the information gathered. All the unknowns are assumed to

be a wall when traveling back to the start with this algorithm. A new path will

never need to be calculated because the return path is based upon a path the

robot knows exists. The third is “Assume Walls Unless Cell is Visited.” This is

in between the previous two algorithms. It will only assume an unknown is not

a wall if the cell it is attempting to enter has already been visited. Otherwise it

will assume that all unknowns are walls.

Twelve different algorithms can be created with the different

combinations of the above steps. We number the algorithms for later

reference.

ROHINI COLLEGE OF ENGINEERNG AND TECHNOLOGY

EC8074- ROBOTICS AND AUTOMATION

The results from these tests were split into three different categories. The

robot logged the number of bumps, turns and moves it took during the

duration of each test. With these different statistics we can apply weights to

each type of movement and anticipate the amount of time it would take

different robots to reach the goal in the same situation. The weights are

multipliers applied to the different movement types. We used three

different sets of weights against our results, each adding up to a total of 15.

The first weight applied was five on each of the three movement types.

This was to model the robot that takes the same amount of time to do all

three movements. The second is three on one and six on the other two. This

set demonstrates the robots that are quick at one of the movements and

slower at the other two. The third is nine on one and three on the other two.

This weight set describes the robots that are really slow at one of the

movements and fast at the other two movements.

	4.1 Localization and Navigation
	Position prediction:
	Observation:
	Matching:
	Estimation:
	4.2 Probabilistic based Localization
	4.3 NAVIGATION:
	Localization versus Navigation:
	Behavior based Community:
	Formulation and Structure of the SLAM Problem
	Probabilistic SLAM

	Solutions to the SLAM Problem

