5.2. FORMATION OF STIFFNESS MATRICES

The $n x n$ stiffness matrix of a structure with a specified set of n co-ordinates is determined by applying one unit displacement at a time and determining the forces at each co-ordinate to sustain that displacement.

For example if we want to determine the 3×3 stiffness matrix for the structure in this fig.5.1,.

- Find the forces at 1,2 and 3 when displacements at 1 is unity and displacements at 2 and 3 are zero i.e., find P1,P2 and P3 when $\delta_{1}=1$ and $\delta_{2}=\delta_{3}=0$.These 3 Forces constitute the first column of the stiffness matrix $\left[\mathrm{k}_{1}\right]$.
- Find the 3 forces at 1,2 and 3 when $\delta_{2}=1$ and $\delta_{1}=\delta_{3}=0$.These 3 Forces constitute the second column of the stiffness matrix $\left[\mathrm{k}_{1}\right]$.
- Find forces at 1,2 and 3 when $\delta_{3}=1$ and $\delta_{1}=\delta_{2}=0$.These 3 forces make the third column of $\left[k_{1}\right]$.

Example 5.2.1

Determine the 2×2 stiffness matrix of the beam system shown in fig.5.7

$l=3, \quad \mathrm{~A}=1, \quad \mathrm{E}=2, \quad \mathrm{I}=3$
Fig. 5.7

Solution:

Step 1.To find the first column of $[\mathrm{k}]$ apply a unit displacement at 1 only and restrained 2 from rotating

If $\theta=1$,
$\mathrm{P}_{1}=4 \mathrm{EI} \theta_{\mathrm{A}} / \mathrm{L}=4 \times 2 \times 3 / 3=8$
$\mathrm{P}_{2}=2 \mathrm{EI} \theta_{\mathrm{A}} / \mathrm{L}=2 \times 2 \times 3 / 3=4$
Hence;

$$
\left\{\begin{array}{l}
k_{11} \\
k_{21}
\end{array}\right\}=\left\{\begin{array}{l}
8 \\
4
\end{array}\right\}
$$

Step 2.To get the second column of $[k]$ apply a unit rotation at B and restrain A

$\mathrm{P}_{2}=4 \mathrm{Ei} \theta_{\mathrm{B}} / \mathrm{L}=4 \times 2 \times 3 / 3=8$
$\mathrm{P}_{1}=2 E \mathrm{Ei} \theta_{\mathrm{B}} / \mathrm{L}=2 \times 2 \times 3 / 3=4$
Hence;
$\left\{\begin{array}{l}k_{12} \\ k_{22}\end{array}\right\}=\left\{\begin{array}{l}4 \\ 8\end{array}\right\}$ and $[k]=\left[\begin{array}{ll}8 & 4 \\ 4 & 8\end{array}\right]$

