ELGAMAL CRYPTOGRAPHIC SYSTEM

- In 1984, T. Elgamal announced a public-key scheme based on discrete logarithms, closely related to the Diffie-Hellman technique.
- The ElGamal cryptosystem is used in some form in a number of standards including the digital signature standard (DSS), and the S/MIME e-mail standard
- As with Diffie-Hellman, the global elements of ElGamal are a prime number q and α , which is a primitive root of q.

User A generates a private/public key pair as follows:

1. Generate a random integer X_A , such that $1 < X_A < q-1$.

2. Compute $Y^{A} = \alpha^{XA} \mod q$.

3. A's private key is X_A ; A's pubic key is $\{q, \alpha, Y_A\}$.

Any user B that has access to A's public key can encrypt a message as follows:

1. Represent the message M as an integer in the range $0 \le M \le q-1$. Longer messages are sent as a sequence of blocks, with each block being an integer less than q.

2. Choose a random integer k such that $1 \le k \le q-1$.

3. Compute a one-time key $K = (Y_A)^k \mod q$

4. Encrypt M as the pair of integers (C1,C2)where

 $C1 = \alpha^k \mod q$; $c2 = KM \mod q$

User A recovers the plaintext as follows:

1. Recover the key by computing .

2. Compute $M=(C_2K^{-1}) \mod q$

Global Public Elements	
q	prime number
α	$\alpha < q$ and α a primitive root of q

Key Generation by Alice		
Select private X_A	$X_A < q-1$	
Calculate Y_A	$Y_A = \alpha^{XA} \mod q$	
Public key	$PU = \{q, \alpha, Y_A\}$	
Private key	X_A	

Encryption by Bob with Alice's Public Key		
Plaintext:	M < q	
Select random integer k	k < q	
Calculate K	$K = (Y_A)^k \mod q$	
Calculate C_1	$C_1 = \alpha^k \mod q$	
Calculate C_2	$C_2 = KM \mod q$	
Ciphertext:	(C_1, C_2)	

Decryption by Alice with Alice's Private Key		
Ciphertext:	(C_1, C_2)	
Calculate K	$K = (C_1)^{XA} \mod q$	
Plaintext:	$M = (C_2 K^{-1}) \bmod q$	

Reference : William Stallings, Cryptography and Network Security: Principles and Practice, PHI 3rd Edition, 2006

• Let us demonstrate why the ElGamal scheme works. First, we show how is recovered by the decryption process:

$K = (Y_A)^k \mod q$	<i>K</i> is defined during the encryption process
$K = (\alpha^{X_A} \operatorname{mod} q)^k \operatorname{mod} q$	substitute using $Y_A = \alpha^{X_A} \mod q$
$K = \alpha^{kX_A} \mod q$	by the rules of modular arithmetic
$K = (C_1)^{X_A} \mod q$	substitute using $C_1 = \alpha^k \mod q$

Next, using K, we recover the plaintext as

$$C_2 = KM \mod q$$
$$(C_2K^{-1}) \mod q = KMK^{-1} \mod q = M \mod q = M$$

- 1. Bob generates a random integer k.
- 2. Bob generates a one-time key K using Alice's public-key components YA, q, and k.

3. Bob encrypts k using the public-key component α , yielding C1, C2 provides sufficient information for Alice to recover K.

- 4. Bob encrypts the plaintext message using K.
- 5. Alice recovers K from C1 using her private key.
- 6. Alice uses K⁻¹to recover the plaintext message from C2.

Thus, K functions as a one-time key, used to encrypt and decrypt the message.

