
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

STORAGE ORGANIZATION

The management and organization of this logical address space is shared between the compiler,

operating system, and target machine. The operating system maps the logical addresses into physical

addresses, which are usually spread throughout memory.

The run-time representation of an object program in the logical address space consists of data and

program areas as shown in figure. A compiler for a language like C++ on an operating system like Linux

might subdivide memory as in figure.

 CODE AREA: The size of the generated target code is fixed at compile time, so the compiler places

the executable target code in a statically determined area, the low end of memory.

 STATIC AREA: Size of some program data objects, such as global constants, and data generated by

the compiler, such as information to support garbage collection, may be known at compile time, and

these data objects can be placed in another statically determined area. In early versions of Fortran, all

data objects could be allocated statically.

 STACK AND HEAP AREA: To maximize the utilization of space at run time, the other two areas,

Stack and Heap, are at the opposite ends of the remainder of the address space. These areas are

dynamic; their size can change as the program executes. These areas grow towards each other as

needed.

 STACK AREA: Used to store data structures called activation records that get generated during

procedure calls.

 An activation record is used to store information about the status of the machine, such as the value of

the program counter and machine registers, when a procedure call occurs. When control returns from

the call, the activation of the calling procedure can be restarted after restoring the values of relevant

registers and setting the program counter to the point immediately after the call. Data objects whose

lifetimes are contained in that of activation can be allocated on the stack along with other information

associated with the activation.

 HEAP AREA: Many programming languages allow the programmer to allocate and deallocate data

under program control. For example, C has the functions malloc and free that can be used to obtain

and give back arbitrary chunks of storage. The heap is used to manage this kind of long-lived data.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

STACK ALLOCATION SPACE

 Each time a procedure is called, space for its local variables is pushed onto a stack, and when the

procedure terminates, that space is popped onto the stack.

 This arrangement not only allows space to be shared by procedure calls whose durations do not

overlap in time, but it allows us to compile code for a procedure in such a way that the relative

addresses of its nonlocal variables are always the same, regardless of the sequence of procedure calls.

Activation Trees

Stack allocation would not be feasible if procedure calls, or activations of procedures, did not nest in

time.

Activation Records

 Procedure calls and returns are usually managed by a run-time stack called the control stack.

 Each live activation has an activation record (sometimes called a frame) on the control stack, with the

root of the activation tree at the bottom, and the entire sequence of activation records on the stack

corresponding to the path in the activation tree to the activation where control currently resides.

 The latter activation has its record at the top of the stack.

1. Temporary values, such as those arising from the evaluation of expressions, in cases where those

temporaries cannot be held in registers.

2. Local data belonging to the procedure whose activation record this is.

3. A saved machine status, with information about the state of the machine just before the call to the

procedure.

4. An “access link" may be needed to locate data needed by the called procedure but found elsewhere, e.g.,

in another activation record.

5. A control link, pointing to the activation record of the caller.

6. Space for the return value of the called function, if any. Again, not all called procedures return a value, and

if one does, we may prefer to place that value in a register for efficiency.

7. The actual parameters used by the calling procedure. Commonly, these Values are not placed in the

activation record but rather in registers, when possible, for greater efficiency. However, we show a space for

them to be completely general.

Calling Sequences

 Procedure calls are implemented by what are known as calling sequences, which consists of code that

allocates an activation record on the stack and enters information into its fields.

 A return sequence is similar code to restore the state of the machine so the calling procedure can

continue its execution after the call.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Variable Length Data on the stack

 The run-time memory-management system must deal with objects whose size are not known at

compile time. In modern languages, objects whose size cannot be determined at compile time are

allocated space in the heap. However, it is also possible to allocate objects, arrays, or other structures

of unknown size on the stack.

 The reason to prefer placing objects on the stack if possible is that we avoid the expense of garbage

collecting their space.

