ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

2.3 OPERATIONS ON PROCESSES
The operating system must provide a mechanism for process creation and
termination. The process can be created and deleted dynamically by the operating system.
The Operations on the process includes
= Process creation
= Process Termination
2.3.1 Process Creation
During Execution a process may create several new processes.
e The creating process is called as the parent process and the newly created process is
called as the child process.
o Processes may create other processes through appropriate system calls, such
as fork or spawn.
o The operating systems identify the processes according to their unique process

identifier.

kthreadd
pid = 2

sshd
pid = 3028

sshd
pid = 3610

tcsch
pid = 4005

login
pid = 8415

bash
pid = 8416

pdflush
pid = 200

Ps
pid = 9298

e The init process serves as the root parent process for all the user process.

emacs
pid = 9204

Fig: A tree of processes on a typical Linux system

e Once the system has booted, the init process can also create various user processes,
such as a web or printserver, an ssh server.
e The kthreadd process is responsible for creating additional processes that perform

tasks on behalf of the kernel

CS8493-OPERATING SYSTEMS

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

e The sshd process is responsible for managing clients that connect to the system by
using ssh(Secure shell)
e The login process is responsible for managing clients that directly log onto the system
e The command ps —el will list complete information for all processes currently active in
the system.
When a process creates a new process, two possibilities for execution exist:
e The parent continues to execute concurrently with its children.
e The parent waits until some or all of its children have terminated
There are also two address-space possibilities for the new process:
e The child process is a duplicate of the parent process (it has the same program as the
parent).
e The child process has a new program loaded into it.
e The return code for the fork() is zero for the new (child) process, whereas the
(nonzero) process identifier of the child is returned to the parent.
o After a fork() system call, one of the two processes typically uses the exec()
system call to replace the process’s memory space with a new program.
o A new process is created by the fork() system call. The new process consists of
a copy of the address space of the original process. This mechanism allows the

parent process to communicate easily with its child process.

Depending on system implementation, a child process may receive some amount of
shared resources with its parent. Child processes may or may not be limited to a subset of the
resources originally allocated to the parent, preventing runaway children from consuming all

of a certain system resource.

CS8493-OPERATING SYSTEMS

parent (pid > 0) _—
e —’Gﬁﬂ()>—b parent resumes
parent 40@= fc;(](I

o e G*GG{D Q‘ﬂ())
child (pid = 0) b)

#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>

int main()

{
pid_t pid;
/* fork a child process */
pid = fork();
if (pid < 0) { /* error occurred */
fprintf (stderr, "Fork Failed");
return 1;
else if (pid == 0) { /* child process */
execlp("/bin/1s","1s" ,NULL) ;
else { /* parent process */
/* parent will wait for the child to complete */
wait (NULL) ;
printf("Child Complete");
}
return 0;
}

Creating a separate process using the UNIX fork()system call.

Process creation using the fork() system call

2.3.2 Process Termination

e A process terminates when it finishes executing its final statement and asks the

operating system to delete it by using the exit() system call.

e At that point, the process may return a status value (typically an integer) to its parent

process.

e All the resources of the process—including physical and virtual memory, open files,

and 1/0 buffers—are deallocated by the operating system

CS8493-OPERATING SYSTEMS

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

A parent may terminate the execution of one of its children for a variety of reasons,
such as
The child has exceeded its usage of some of the resources that it has been allocated.
The task assigned to the child is no longer required.
The parent is exiting, and the operating system does not allow a child to continue if its
parent terminates.
Some systems do not allow a child to exist if its parent has terminated. In such systems,
if a process terminates (either normally or abnormally), then all its children must also
be terminated. This phenomenon is referred to as cascading termination.
A parent process may wait for the termination of a child process by using the wait()
system call
This system call also returns the process identifier of the terminated child so that the
parent can tell which of its children has terminated:

pid t pid;

int status;

pid = wait(&status);

o A process that has terminated, but whose parent has not yet called wait(), is

known as a zombie process.

CS8493-OPERATING SYSTEMS

