
ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8493-OPERATING SYSTEMS

2.3 OPERATIONS ON PROCESSES

 The operating system must provide a mechanism for process creation and

termination. The process can be created and deleted dynamically by the operating system.

The Operations on the process includes

 Process creation

 Process Termination

2.3.1 Process Creation

During Execution a process may create several new processes.

 The creating process is called as the parent process and the newly created process is

called as the child process.

o Processes may create other processes through appropriate system calls, such

as fork or spawn.

o The operating systems identify the processes according to their unique process

identifier.

:

 Fig: A tree of processes on a typical Linux system

 The init process serves as the root parent process for all the user process.

 Once the system has booted, the init process can also create various user processes,

such as a web or printserver, an ssh server.

 The kthreadd process is responsible for creating additional processes that perform

tasks on behalf of the kernel

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8493-OPERATING SYSTEMS

 The sshd process is responsible for managing clients that connect to the system by

using ssh(Secure shell)

 The login process is responsible for managing clients that directly log onto the system

 The command ps –el will list complete information for all processes currently active in

the system.

When a process creates a new process, two possibilities for execution exist:

 The parent continues to execute concurrently with its children.

 The parent waits until some or all of its children have terminated

There are also two address-space possibilities for the new process:

 The child process is a duplicate of the parent process (it has the same program as the

parent).

 The child process has a new program loaded into it.

 The return code for the fork() is zero for the new (child) process, whereas the

(nonzero) process identifier of the child is returned to the parent.

o After a fork() system call, one of the two processes typically uses the exec()

system call to replace the process’s memory space with a new program.

o A new process is created by the fork() system call. The new process consists of

a copy of the address space of the original process. This mechanism allows the

parent process to communicate easily with its child process.

 Depending on system implementation, a child process may receive some amount of

shared resources with its parent. Child processes may or may not be limited to a subset of the

resources originally allocated to the parent, preventing runaway children from consuming all

of a certain system resource.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8493-OPERATING SYSTEMS

Process creation using the fork() system call

2.3.2 Process Termination

 A process terminates when it finishes executing its final statement and asks the

operating system to delete it by using the exit() system call.

 At that point, the process may return a status value (typically an integer) to its parent

process.

 All the resources of the process—including physical and virtual memory, open files,

and I/O buffers—are deallocated by the operating system

Creating a separate process using the UNIX fork()system call.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8493-OPERATING SYSTEMS

 A parent may terminate the execution of one of its children for a variety of reasons,

such as

 The child has exceeded its usage of some of the resources that it has been allocated.

 The task assigned to the child is no longer required.

 The parent is exiting, and the operating system does not allow a child to continue if its

parent terminates.

 Some systems do not allow a child to exist if its parent has terminated. In such systems,

if a process terminates (either normally or abnormally), then all its children must also

be terminated. This phenomenon is referred to as cascading termination.

 A parent process may wait for the termination of a child process by using the wait()

system call

 This system call also returns the process identifier of the terminated child so that the

parent can tell which of its children has terminated:

 pid t pid;

 int status;

 pid = wait(&status);

o A process that has terminated, but whose parent has not yet called wait(), is

known as a zombie process.

