## RCC WATER TANK - CIRCULAR

### 3.2 Design an RC circular tank

Example 2
Design an RC circular tank resting on the ground with a flexible base and a spherical dome for a capacity of 500000 litres. The depth of storage is to be 4 m . Free board is 200 mm , use M20 grade concrete and fe 250 grade 1 steel. Permissible stress should be recommended in is $456: 2000$, draw the following views, Cross section of the tank showing reinforcement details in dome , tank walls and floor slab.

Step1: Given data

| Capacity of circular tank | $=500000$ litres |
| ---: | :--- |
| depth of water | $=4 \mathrm{~m}$ |
| Free board | $=200 \mathrm{~mm}$ |
| fck | $=20 \mathrm{~N} / \mathrm{mm}^{\wedge} 2$ |
| fy | $=250 \mathrm{~N} / \mathrm{mm}^{\wedge} 2$ |

Step2 : permissible stress
IS 456 :2000
Page no. 80

$$
\begin{aligned}
& \sigma c t=1.2 \mathrm{~N} / \mathrm{mm}^{\wedge} 2(\text { for tank walls }) \\
&=2.8 \mathrm{~N} / \mathrm{mm}^{\wedge} 2(\text { for dome ring beam }) \\
&=6.25 \mathrm{KN} / \mathrm{m}^{\wedge} 2 \\
&=5 \mathrm{~N} / \mathrm{mm}^{\wedge} 2 \\
& \sigma c \mathrm{c} \\
& \sigma \mathrm{cbc} \quad=7 \mathrm{~N} / \mathrm{mm}^{\wedge} 2 \\
& \mathrm{M}=280 / 3 \mathrm{x} \mathrm{ocbc} \\
&=13.33
\end{aligned}
$$

Step3 : Dimension of tank wall

$$
\begin{aligned}
\left(\pi \times \mathrm{D}^{\wedge} 2 / 4\right) \times \mathrm{h} & =500000 \text { litres } \\
\left(\pi \times \mathrm{D}^{\wedge} 2 / 4\right) \times 4 & =500000 \times 1000 \\
\mathrm{D}^{\wedge} 2 & =(500000 \times 1000) / \pi \\
\mathrm{D}^{\wedge} 2 & =159.2 \times 10^{\wedge} 6 \\
\mathrm{D} & =12618.8 \mathrm{~mm} \\
& =12.6 \mathrm{~m}
\end{aligned}
$$

Step4 : Design of spherical dome

$$
\begin{array}{ll}
\text { Central rise of dome } & =[(1 / 5) \times \mathrm{D}] \\
& =[(1 / 5) \times 12.6] \\
& =2.5 \mathrm{~m}
\end{array}
$$

Radius of dome

$$
\begin{aligned}
(\mathrm{R}-2.5)^{\wedge} 2 & =\mathrm{R}^{\wedge} 2-6.3^{\wedge} 2 \\
& =9.2 \mathrm{~m}
\end{aligned}
$$

$$
\Theta=43.2
$$

$$
\sin \Theta=0.6847
$$

$$
\cos \Theta=0.7289
$$

thickness

$$
\mathrm{t} \quad=100 \mathrm{~mm}
$$

Radius of dome

$$
\begin{aligned}
(\mathrm{R}-2.5)^{\wedge} 2 & =\mathrm{R}^{\wedge} 2-6.3^{\wedge} 2 \\
& =9.2 \mathrm{~m} \\
\Theta & =43.2
\end{aligned}
$$

$$
\begin{aligned}
& \sin \Theta=0.6847 \\
& \cos \Theta=0.7289
\end{aligned}
$$

thickness

$$
\mathrm{t} \quad=100 \mathrm{~mm}
$$


(a) loads
self weight of dome $\quad=0.1 \times 24$

$$
=2.4 \mathrm{KN} / \mathrm{m}^{\wedge} 2
$$

live load and floor finish $=2 \mathrm{KN} / \mathrm{m}^{\wedge} 2$

$$
\text { total load }=4.4 \mathrm{KN} / \mathrm{m}^{\wedge} 2
$$

(b) Stresses in dome

Meridional thrust T1 $=[(\mathrm{w}$ x R $) /(1+\cos \Theta)]$

$$
\begin{aligned}
& =[(4.4 \times 9.2) /(1+\cos 43.2)] \\
& =23.41 \mathrm{KN} / \mathrm{m}
\end{aligned}
$$

Meridional compressive stress

$$
=\left[\left(23.41 \times 10^{\wedge} 3\right) /(1000 \times 100)\right]
$$

$$
=0.2341 \mathrm{~N} / \mathrm{mm}^{\wedge} 2
$$

Hoop stress

$$
\begin{aligned}
& =[w R / t](\cos \Theta-1 /(1+\cos \Theta) \\
& =[4.4 \times 9.2 / 0.1](\cos 43.2-1 /(1+\cos 43.2) \\
& =60.72 \mathrm{KN} / \mathrm{m}^{\wedge} 2 \\
& =0.06072 \mathrm{~N} / \mathrm{mm}^{\wedge} 2
\end{aligned}
$$

(c) Reinforced details in dome

$$
\begin{aligned}
\text { Ast } & =0.3 \% \text { of cross section area } \\
& =0.3 / 100 \times \mathrm{bx} \mathrm{t} \\
& =(0.3 / 100) \times[1000 \times 100] \\
& =300 \mathrm{~mm}^{\wedge} 2
\end{aligned}
$$

spacing
Provide 8 mm dia bars

$$
\begin{aligned}
\text { Spacing } & =1000 \times\left[\left(\pi \mathrm{d}^{\wedge} 2 / 4\right) / \text { Ast }\right] \\
& =1000 \times\left[\left(\pi \times 8^{\wedge} 2 / 4\right) / 300\right] \\
& =166 \mathrm{~mm}
\end{aligned}
$$

Provide 8 mm dia bars at 160 mm c/c
(d) Ring beam
horizontal component thrust $=\mathrm{T} 1 \cos \Theta$
$=23.41 \times \cos 43.2$
$=17.06 \mathrm{KN} / \mathrm{m}$

Hoop tension in ring beam
$=($ horizontal Thrust x dia of tank) $/ 2$

$$
\begin{aligned}
& =[(17.06 \times 12.6) / 2] \\
& =107.47 \mathrm{KN} \\
\text { Ast } & =\text { hoop tension } / \sigma \mathrm{st} \\
& =107.47 \times 10^{\wedge} 3 / 115 \\
& =935 \mathrm{~mm}^{\wedge} 2
\end{aligned}
$$

Provide 4nos of 20 mm dia bars

$$
\begin{aligned}
\text { ast } & =\left[\left(\pi \mathrm{d}^{\wedge} 2 / 4\right) \times 4\right] \\
& =\left[\left(\pi 20^{\wedge} 2 / 4\right) \times 4\right] \\
& =1256 \mathrm{~mm}^{\wedge} 2
\end{aligned}
$$

Find 'Ac' cross sectional area of ring beam
$\mathrm{Ft} /[\mathrm{Ac}+(\mathrm{m}-1) \mathrm{Ast}]=$ allowable stress
$107.47 \times 10^{\wedge} 3 /[\mathrm{Ac}+(13.33-1) \times 1256]$

$$
\begin{aligned}
& =2.8 \\
\text { Ac } & =23310 \mathrm{~mm}^{\wedge} 2
\end{aligned}
$$

Adopt a ring beam of size $200 \mathrm{~mm} \times 200 \mathrm{~mm}$ with 4 nos of 20 mm dia as hoop reinforcement and stirrups of 6 mm dia at 150 mm c/c

Step5 : Reinforcement in tank walls

$$
\begin{aligned}
\text { Assume } \mathrm{w} & =10 \\
\text { Assume } \mathrm{H} & =4+0.2 \\
& =4.2 \mathrm{~m}
\end{aligned}
$$

Max hoop tension $=0.5 \times \mathrm{w} \times \mathrm{H} \mathrm{x} \mathrm{D}$

$$
=0.5 \times 10 \times 4.2 \times 12.6
$$

$$
=264.6 \mathrm{KN}
$$

Tension reinforcement

$$
\begin{aligned}
\text { Ast } & =\text { max hoop tension } / \sigma \text { st } \\
& =264.6 \times 10^{\wedge} 3 / 115 \\
& =2300 \mathrm{~mm}^{\wedge} 2
\end{aligned}
$$

Spacing
Provide 16 mm dia bars on both sides

$$
\begin{aligned}
\text { Spacing } & =1000 \times\left[\left(\pi \mathrm{d}^{\wedge} 2 / 4\right) \times 2 / \text { Ast }\right] \\
& =1000 \times\left[\left(\pi \times 16^{\wedge} 2 / 4\right) \times 2 / 2300\right] \\
& =174 \mathrm{~mm}
\end{aligned}
$$

Provide 16 mm dia bars at 170 mm c/c on both face
Step6 : Thickness of tank walls

| $\max$ hoop tension/ [ $1000 \mathrm{t}+(\mathrm{m}-1)$ Ast $]$ |  | $=\sigma c t$ |
| ---: | :--- | ---: | :--- |
| $264.6 \times 10^{\wedge} 3 /[1000 \mathrm{t}+(13.33-1) \times 2300]$ |  | $=1.2$ |
| $264.6 \times 10^{\wedge} 3 /[1000 \mathrm{t}+28359]$ |  | $=1.2$ |
| $264.6 \times 10^{\wedge} 3$ |  | $=1.2[1000 \mathrm{t}+28359]$ |
| $264.6 \times 10^{\wedge} 3$ |  | $=1200 \mathrm{t}+34030.8$ |
| 1200 t | $=264.6 \times 10^{\wedge} 3-34030.8$ |  |
| t | $=177 \mathrm{~mm}$ |  |
| t | $=190 \mathrm{~mm}(\mathrm{adopt})$ |  |

Step7 : curtailment of reinforcement of tank walls
Minimum reinforcement at top $\quad=0.3 \%$ of cross section

$$
\text { Ast }=(0.3 / 100) \times 1000 \times 190
$$

## Spacing

Provide 12 mm dia bars on both sides

$$
\begin{aligned}
\text { Spacing } & =1000 \times\left[\left(\pi \mathrm{d}^{\wedge} 2 / 4\right) \times 2 / \text { Ast }\right] \\
& =1000 \times\left[\left(\pi \times 12^{\wedge} 2 / 4\right) \times 2 / 570\right] \\
& =396 \mathrm{~mm}
\end{aligned}
$$

Provide 12 mm dia bars at $300 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ at top of tank on both sides for height of 1 m from top

Spacing at a depth of 2 m below the top is given by

$$
\begin{aligned}
\text { Ast } & =[(0.5 \times \mathrm{w} \times \mathrm{H} \times \mathrm{D}) / \sigma \mathrm{st}] \\
& =\left[(0.5 \times 10 \times 2 \times 12.6) \times 10^{\wedge} 3 / 115\right] \\
& =1095 \mathrm{~mm}^{\wedge} 2
\end{aligned}
$$

Spacing
Provide 16 mm dia bars on both sides

$$
\begin{aligned}
\text { Spacing } & =1000 \times\left[\left(\pi \mathrm{d}^{\wedge} 2 / 4\right) \times 2 / \text { Ast }\right] \\
& =1000 \times\left[\left(\pi \times 16^{\wedge} 2 / 4\right) \times 2 / 1095\right] \\
& =367 \mathrm{~mm}
\end{aligned}
$$

Provide 16 mm dia bars at 300 mm c/c

Area of vertical reinforcement
area of vertical reinforcement $=0.3 \%$ of cross section

$$
\text { Ast }=(0.3 / 100) \times 1000 \times 190
$$

$$
=570 \mathrm{~mm}^{\wedge} 2
$$

## Spacing

Provide 10 mm dia bars on both sides

$$
\begin{aligned}
\text { Spacing } & =1000 \times\left[\left(\pi \mathrm{d}^{\wedge} 2 / 4\right) \times 2 / \text { Ast }\right] \\
& =1000 \times\left[\left(\pi \times 10^{\wedge} 2 / 4\right) \times 2 / 570\right] \\
& =275 \mathrm{~mm}
\end{aligned}
$$

Provide 10 mm dia bars at $270 \mathrm{~m} \mathrm{c} / \mathrm{c}$

Step8 : Tank floor slab
Provide nominal thickness of 150 mm for base slab minimum area of reinforcement

$$
\begin{aligned}
& =0.3 \% \text { of cross section } \\
\text { Ast } & =(0.3 / 100) \times 1000 \times 150 \\
& =450 \mathrm{~mm}^{\wedge} 2
\end{aligned}
$$

Provide half of reinforcement near each face

$$
\begin{aligned}
\text { Ast } & =450 / 2 \\
& =225 \mathrm{~mm}^{\wedge} 2
\end{aligned}
$$

Spacing

Provide 8mm dia bars

$$
\begin{aligned}
\text { Spacing } & =1000 \times\left[\left(\pi \mathrm{d}^{\wedge} 2 / 4\right) / \text { Ast }\right] \\
& =1000 \times\left[\left(\pi \times 8^{\wedge} 2 / 4\right) / 225\right] \\
& =220 \mathrm{~mm}
\end{aligned}
$$

Provide 8 mm dia bars at $220 \mathrm{~m} \mathrm{c} / \mathrm{c}$ in both directions at top and bottom of tank floor

