UNIT IV

Quantum Physics

4.6.Particle in a one dimensional box

Application of Schrodinger Wave Equation to a Particle (Electron) Enclosed in a OneDimensional Potential Box

Consider a particle of mass m moving back and forth between the walls of a 1D box. Since the walls are of infinite potential the particle does not penetrate out from the box. Also, the particle has elastic collisions with the walls. Therefore, the potential energy of the electron inside the box is constant and it is taken as zero for simplicity. The potential energy V of the particle is on the wall of the box is infinity.

Thus the potential function is

$$
\begin{aligned}
& \mathrm{V}(\mathrm{x})=0 \quad 0<\mathrm{x}<\mathrm{a} \\
& \mathrm{~V}(\mathrm{x})=\infty \quad 0 \geq x \geq a
\end{aligned}
$$

This function is known as square well potential

Fig 4.6.1 Particle in 1D box
(Source: "Advanced Engineering Physics" by Sujay Kumar Bhattacharya, Saumen Pal)
Here the particle cannot move outside and the boundary conditions can be written as

$$
\begin{array}{lr}
\Psi=0 & \text { at } \mathrm{x}=0 \text { and a } \\
\Psi \neq 0 & \text { at } 0 \leq x \leq 0
\end{array}
$$

The Schrodinger's equation in 1D is

$$
\begin{equation*}
\frac{d^{2} \Psi}{d x^{2}}+\frac{2 m}{\hbar^{2}}(E-V) \Psi=0 \tag{1}
\end{equation*}
$$

But $\mathrm{V}=0$ inside the potential well
(1) Becomes

$$
\begin{equation*}
\frac{d^{2} \Psi}{d x^{2}}+\frac{2 m}{\hbar^{2}}(E \Psi)=0 \tag{2}
\end{equation*}
$$

Put

$$
\begin{equation*}
\frac{2 m E}{\hbar^{2}}=k^{2} \tag{3}
\end{equation*}
$$

(2) Becomes

$$
\frac{d^{2} \Psi}{d x^{2}}+k^{2} \Psi=0
$$

Solution for this equation is

$$
\begin{equation*}
\Psi(x)=A \sin k x+B \cos K x \tag{4}
\end{equation*}
$$

A and B are constants.

To find A and B

Apply boundary conditions
At $\mathrm{x}=0 \quad \Psi=0$
Sub in (4)

$$
\begin{gather*}
0=B \\
\therefore \Psi=\mathrm{A} \sin k x \tag{5}
\end{gather*}
$$

At $\mathrm{x}=\mathrm{a} \quad \Psi=0$
$0=\mathrm{A} \sin \mathrm{ka}$
A sinka=0

A cannot be zero
\therefore Sinka $=0$
$\mathrm{Ka}=\mathrm{n} \pi$
$\therefore k=\frac{\mathrm{n} \pi}{a}$

Sub this in (3)

$$
\begin{align*}
& \frac{2 m E}{\hbar^{2}}=\frac{n^{2} \pi^{2}}{a^{2}} \\
& E=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m a^{2}} \tag{6}
\end{align*}
$$

And we know that

$$
\hbar^{2}=\frac{h^{2}}{4 \pi^{2}}
$$

Sub this in (6)

$$
E=\frac{n^{2} h^{2}}{8 m a^{2}}-\cdots--\cdots----(7)
$$

This is the expression for energy Eigen value for a particle moving in 1D box.

To find energy Eigen function Ψ

$$
\begin{align*}
& \Psi=A \sin k x \\
& \left.\Psi=A \sin \frac{n \pi}{a} x \cdots \cdots-\cdots=\frac{n \pi}{a}\right) \tag{8}
\end{align*}
$$

Normalisation of wave function

We know that
Within the potential well the particle is present
Then the probability of finding the particle is

$$
\int \Psi \Psi^{*} d \tau=1
$$

Here it is 1D

$$
\begin{aligned}
& \int_{0}^{a} \Psi \Psi^{*} d x=1 \\
\therefore & \int_{0}^{a} \mathrm{~A} \sin \frac{n \pi}{a} x \mathrm{~A} \sin \frac{n \pi}{a} x d x=1 \\
& \int_{0}^{a} \mathrm{~A}^{2} \sin ^{2} \frac{n \pi}{a} x d x=1 \\
& \mathrm{~A}^{2} \int_{0}^{a} \sin ^{2} \frac{n \pi}{a} x d x=1 \\
& \mathrm{~A}^{2} \int_{0}^{a} \frac{1-\cos 2 \frac{n \pi}{a} x}{2} d x=1 \\
& \mathrm{~A}^{2} \int_{0}^{a} d x-\cos 2 \frac{n \pi}{a} x d x=1 \\
& \frac{\mathrm{~A}^{2}}{2}\left(\mathrm{X}-\frac{\sin \frac{2 n \pi}{a} x}{\frac{2 n \pi}{a}}\right)_{0}^{a}=1
\end{aligned}
$$

Substituting the upper \& lower limit
We get

$$
\begin{gathered}
\frac{\mathrm{A}^{2}}{2}\left(\mathrm{a}-\frac{\sin \frac{2 n \pi}{a} a}{\frac{2 n \pi}{a}}\right)-0=1 \\
\frac{\mathrm{~A}^{2} a}{2}=1 \\
\mathrm{~A}^{2}=2 / \mathrm{a} \\
\mathrm{~A}=\sqrt{\frac{2}{a}}
\end{gathered}
$$

Sub this in (8)

$$
\Psi_{n}=\sqrt{\frac{2}{a}} \sin \frac{n \pi}{a} x
$$

This is the expression for Eigen function or wave function of a particle moving in a 1D potential well.

Fig 4.4.2 Particle in a box
Source: "Advanced Engineering Physics" by Sujay Kumar Bhattacharya, Saumen Pal

Result:

1. Energy Eigen value is inversely proportional to the square of width of the potential well.
2. Energy Eigen value is inversely proportional to the mass of the particle.
3. From the figure it is shown that the probability of finding the particle is maximum at the centre for the first energy value.
4. From the figure it is shown that the probability of finding the particle is minimum at the centre for the second energy value.
