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11. BINARY SEARCH 

 A binary search is efficient algorithm to find the position of a target (key) value 

within a sorted array. 

• The binary search algorithm begins by comparing the target value to the value 

of the middle element of the sorted array. If the target value is equal to the 

middle element's value, then the position is returned and the search is finished. 

• If the target value is less than the middle element's value, then the search 

continues on the lower half of the array. 

• if the target value is greater than the middle element's value, then the search 

continues on the upper half of the array. 

• This process continues, eliminating half of the elements, and comparing the 

target value to the value of the middle element of the remaining elements - until 

the target value is either found (position is returned). 

 

Binary search is a remarkably efficient algorithm for searching in a sorted array 

(Say A). It works by comparing a search key K with the array’s middle element A[m]. If 

they match, the algorithm stops; otherwise, the same operation is repeated recursively for 

the first half of the array if K <A[m], and for the second half if K>A[m]: 

 

 

 

 

Though binary search is clearly based on a recursive idea, it can be easily implemented as 

a non-recursive algorithm, too. Here is pseudocode of this non recursive version. 
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ALGORITHM Binary Search (A[0..n − 1], K) 

//Implements non recursive binary search 

//Input: An array A[0..n − 1] sorted in ascending order and a search key K 

//Output: An index of the array’s element that is equal to K/ or −1 if there is no 

such  element 

l ← 0; r ← n − 1 

while l ≤ r do 

m ← ⎝(l + r)/2] 

if K = A[m] return m 

else ifK <A[m] 

r ← m − 1 

else l ← m + 1 

return −1 

The standard way to analyze the efficiency of binary search is to count the number of times 

the search key is compared with an element of the array (three-way comparisons). One 

comparison of K with A[m], the algorithm can determine whether K is smaller, equal to, or 

larger than A[m]. 

As an example, let us apply binary search to searching for K = 70 in the array. The 

iterations of the algorithm are given in the following table: 

 

index 0 1 2 3 4 5 6 7 8 9 10 11 12 

value              

iteration1 

iteration2 

l      m  

 

l 

  

 

m 

  r 
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3 14 27 31 39 42 55 70 74 81 85 93 98 
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iteration 3        l,m r     

The worst-case inputs include all arrays that do not contain a given search key, as well 

as some successful searches. Since after one comparison the algorithm faces the same situation 

but for an array half the size, 

The number of key comparisons in the worst case Cworst(n) by recurrence relation. 

orct(n) = orct(⎝n[) + 1 fo n > 1, orct(1) =1. 

 orct (2k) = (k + 1) = log2 k + 1׵ [orct(n)=⎝log2n]+1=]log2(n+1)׵

forn=2k 

• First, The worst-case time efficiency of binary search is in Θ(logn). 

• Second, the algorithm simply reduces the size of the remaining array by half on 

each iteration, the number of such iterations needed to reduce the initial size n to 

the final size 1 has to be about log2n. 

• Third, the logarithmic function grows so slowly that its values remain small even 

for very large values ofn. 

              The average case slightly smaller than that in the worst case 

                         Cavg(n) ≈ log2n 

            The average number of comparisons in a successful is 

                       Cavg(n) ≈ log2n − 1 

           The average number of comparisons in an unsuccessful is 

                       Cavg(n) ≈ log2(n + 1). 

 

 


