
ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

SYNCHRONOUS VS ASYNCHRONOUS EXECUTIONS

The execution of process in distributed systems may be synchronous or asynchronous.

Asynchronous Execution:

 A communication among processes is considered asynchronous, when every

communicating process can have a different observation of the order of the messages being

exchanged. In an asynchronous execution:

 there is no processor synchrony and there is no bound on the drift rate of processor clocks

 message delays are finite but unbounded

 no upper bound on the time taken by a process

Fig : Asynchronous execution in message passing system

Synchronous Execution:

 A communication among processes is considered synchronous when every process

observes the same order of messages within the system. In the same manner, the execution is

considered synchronous, when every individual process in the system observes the same total

order of all the processes which happen within it. In an synchronous execution:

 processors are synchronized and the clock drift rate between any two processors is

bounded

 message delivery times are such that they occur in one logical step or round

 upper bound on the time taken by a process to execute a step.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

Fig: Synchronous execution

Emulating an asynchronous system by a synchronous system (A → S)

An asynchronous program can be emulated on a synchronous system fairly trivially as

the synchronous system is a special case of an asynchronous system – all communication

finishes within the same round in which it is initiated.

 Emulating a synchronous system by an asynchronous system (S → A)

A synchronous program can be emulated on an asynchronous system using a tool called

synchronizer.

Emulation for a fault free system

Fig : Emulations in a failure free message passing system

If system A can be emulated by system B, denoted A/B, and if a problem is not solvable

in B, then it is also not solvable in A. If a problem is solvable in A, it is also solvable in B.

Hence, in a sense, all four classes are equivalent in terms of computability in failure-free

systems.

DESIGN ISSUES AND CHALLENGES IN DISTRIBUTED SYSTEMS

 The design of distributed systems has numerous challenges. They can be categorized

into:

 Issues related to system and operating systems design

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

 Issues related to algorithm design

 Issues arising due to emerging technologies

The above three classes are not mutually exclusive.

Issues related to system and operating systems design

 The following are some of the common challenges to be addressed in designing a

distributed system from system perspective:

 Communication: This task involves designing suitable communication mechanisms

among the various processes in the networks.

Examples: RPC, RMI

 Processes: The main challenges involved are: process and thread management at both

client and server environments, migration of code between systems, design of software and

mobile agents.

 Naming: Devising easy to use and robust schemes for names, identifiers, and addresses

is essential for locating resources and processes in a transparent and scalable manner. The

remote and highly varied geographical locations make this task difficult.

 Synchronization: Mutual exclusion, leader election, deploying physical clocks, global

state recording are some synchronization mechanisms.

 Data storage and access Schemes: Designing file systems for easy and efficient data

storage with implicit accessing mechanism is very much essential for distributed operation

 Consistency and replication: The notion of Distributed systems goes hand in hand with

replication of data, to provide high degree of scalability. The replicas should be handed with

care since data consistency is prime issue.

 Fault tolerance: This requires maintenance of fail proof links, nodes, and processes.

Some of the common fault tolerant techniques are resilience, reliable communication,

distributed commit, check pointing and recovery, agreement and consensus, failure detection,

and self-stabilization.

 Security: Cryptography, secure channels, access control, key management – generation

and distribution, authorization, and secure group management are some of the security measure

that is imposed on distributed systems.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

 Applications Programming Interface (API) and transparency: The user friendliness

and ease of use is very important to make the distributed services to be used by wide

community. Transparency, which is hiding inner implementation policy from users, is of the

following types:

 Access transparency: hides differences in data representation

 Location transparency: hides differences in locations y providing uniform access to

data located at remote locations.

 Migration transparency: allows relocating resources without changing names.

 Replication transparency: Makes the user unaware whether he is working on original or

replicated data.

 Concurrency transparency: Masks the concurrent use of shared resources for the user.

 Failure transparency: system being reliable and fault-tolerant.

 Scalability and modularity: The algorithms, data and services must be as distributed as

possible. Various techniques such as replication, aching and cache management, and

asynchronous processing help to achieve scalability.

Algorithmic challenges in distributed computing

 Designing useful execution models and frameworks

The interleaving model, partial order model, input/output automata model and the Temporal

Logic of Actions (TLA) are some examples of models that provide different degrees of

infrastructure.

 Dynamic distributed graph algorithms and distributed routing algorithms

 The distributed system is generally modeled as a distributed graph.

 Hence graph algorithms are the base for large number of higher level communication,

data dissemination, object location, and object search functions.

 These algorithms must have the capacity to deal with highly dynamic graph

characteristics. They are expected to function like routing algorithms.

 The performance of these algorithms has direct impact on user-perceived latency, data

traffic and load in the network.

 Time and global state in a distributed system

 The geographically remote resources demands the synchronization based on logical time.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

 Logical time is relative and eliminates the overheads of providing physical time for

applications .Logical time can

(i) capture the logic and inter-process dependencies

(ii) track the relative progress at each process

 Maintaining the global state of the system across space involves the role of time

dimension for consistency. This can be done with extra effort in a coordinated manner.

 Deriving appropriate measures of concurrency also involves the time dimension, as the

execution and communication speed of threads may vary a lot.

 Synchronization/coordination mechanisms

 Synchronization is essential for the distributed processes to facilitate concurrent

execution without affecting other processes.

 The synchronization mechanisms also involve resource management and concurrency

management mechanisms.

 Some techniques for providing synchronization are:

 Physical clock synchronization: Physical clocks usually diverge in the values due to

hardware limitations. Keeping them synchronized is a fundamental challenge to maintain

common time.

 Leader election: All the processes need to agree on which process will play the role of a

distinguished process or a leader process. A leader is necessary even for many distributed

algorithms because there is often some asymmetry.

 Mutual exclusion: Access to the critical resource(s) has to be coordinated.

 Deadlock detection and resolution: This is done to avoid duplicate work, and deadlock

resolution should be coordinated to avoid unnecessary aborts of processes.

 Termination detection: cooperation among the processes to detect the specific global

state of quiescence.

 Garbage collection: Detecting garbage requires coordination among the processes.

 Group communication, multicast, and ordered message delivery

 A group is a collection of processes that share a common context and collaborate on a

common task within an application domain. Group management protocols are needed for

group communication wherein processes can join and leave groups dynamically, or fail.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

 The concurrent execution of remote processes may sometimes violate the semantics and

order of the distributed program. Hence, a formal specification of the semantics of ordered

delivery need to be formulated, and then implemented.

 Monitoring distributed events and predicates

 Predicates defined on program variables that are local to different processes are used for

specifying conditions on the global system state.

 On-line algorithms for monitoring such predicates are hence important.

 An important paradigm for monitoring distributed events is that of event streaming,

wherein streams of relevant events reported from different processes are examined collectively

to detect predicates.

 The specification of such predicates uses physical or logical time relationships.

 Distributed program design and verification tools

Methodically designed and verifiably correct programs can greatly reduce the overhead of

software design, debugging, and engineering. Designing these is a big challenge.

 Debugging distributed programs

Debugging distributed programs is much harder because of the concurrency and replications.

Adequate debugging mechanisms and tools are need of the hour.

 Data replication, consistency models, and caching

 Fast access to data and other resources is important in distributed systems.

 Managing replicas and their updates faces concurrency problems.

 Placement of the replicas in the systems is also a challenge because resources usually

cannot be freely replicated.

 World Wide Web design – caching, searching, scheduling

 WWW is a commonly known distributed system.

 The issues of object replication and caching, pre fetching of objects have to be done on

WWW also.

 Object search and navigation on the web are important functions in the operation of the

web.

 Distributed shared memory abstraction

 A shared memory is easier to implement since it does not involve managing the

communication tasks.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

 The communication is done by the middleware by message passing.

 The overhead of shared memory is to be dealt by the middleware technology.

 Some of the methodologies that does the task of communication in shared memory

distributed systems are:

 Wait-free algorithms: The ability of a process to complete its execution irrespective of

the actions of other processes is wait free algorithm. They control the access to shared resources

in the shared memory abstraction. They are expensive.

 Mutual exclusion: Concurrent access of processes to a shared resource or data is

executed in mutually exclusive manner. Only one process is allowed to execute the critical

section at any given time. In a distributed system, shared variables or a local kernel cannot be

used to implement mutual exclusion. Message passing is the sole means for implementing

distributed mutual exclusion.

 Register constructions: Architectures must be designed in such a way that, registers

allows concurrent access without any restrictions on the concurrency permitted.

 Reliable and fault-tolerant distributed systems

The following are some of the fault tolerant strategies:

 Consensus algorithms: Consensus algorithms allow correctly functioning processes to

reach agreement among themselves in spite of the existence of malicious processes. The goal of

the malicious processes is to prevent the correctly functioning processes from reaching

agreement. The malicious processes operate by sending messages with misleading information,

to confuse the correctly functioning processes.

 Replication and replica management: The Triple Modular Redundancy (TMR)

technique is used in software and hardware implementation. TMR is a fault-tolerant form of N-

modular redundancy, in which three systems perform a process and that result is processed by a

majority-voting system to produce a single output.

 Voting and quorum systems: Providing redundancy in the active or passive

components in the system and then performing voting based on some quorum criterion is a

classical way of dealing with fault-tolerance. Designing efficient algorithms for this purpose is

the challenge.

 Distributed databases and distributed commit: The distributed databases should also

follow atomicity, consistency, isolation and durability (ACID) properties.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

 Self-stabilizing systems: All system executions have associated good(or legal) states and

bad (or illegal) states; during correct functioning, the system makes transitions among the good

states. A self-stabilizing algorithm guarantee to take the system to a good state even if a bad

state were to arise due to some error. Self-stabilizing algorithms require some in-built

redundancy to track additional variables of the state and do extra work.

 Checkpointing and recovery algorithms: Check pointing is periodically recording the

current state on secondary storage so that, in case of a failure. The entire computation is not lost

but can be recovered from one of the recently taken checkpoints. Check pointing in a distributed

environment is difficult because if the checkpoints at the different processes are not

coordinated, the local checkpoints may become useless because they are inconsistent with the

checkpoints at other processes.

 Failure detectors: The asynchronous distributed do not have a bound on the message

transmission time. This makes the message passing very difficult, since the receiver do not

know the waiting time. Failure detectors probabilistically suspect another process as having

failed and then converge on a determination of the up/down status of the suspected process.

 Load balancing: The objective of load balancing is to gain higher throughput, and

reduce the user perceived latency. Load balancing may be necessary because of a variety off

actors such as high network traffic or high request rate causing the network connection to be a

bottleneck, or high computational load. The following are some forms of load balancing:

 Data migration: The ability to move data around in the system, based on the access

pattern of the users

 Computation migration: The ability to relocate processes in order to perform a

redistribution of the workload.

 Distributed scheduling: This achieves a better turnaround time for the users by using

idle processing power in the system more efficiently.

 Real-time scheduling

Real-time scheduling becomes more challenging when a global view of the system state is

absent with more frequent on-line or dynamic changes. The message propagation delays which

are network-dependent are hard to control or predict. This is an hindrance to meet the QoS

requirements of the network.

 Performance

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

User perceived latency in distributed systems must be reduced. The common issues in

performance:

 Metrics: Appropriate metrics must be defined for measuring the performance of

theoretical distributed algorithms and its implementation.

 Measurement methods/tools: The distributed system is a complex entity appropriate

methodology and tools must be developed for measuring the performance metrics.

Applications of distributed computing and newer challenges

 The deployment environment of distributed systems ranges from mobile systems to cloud

storage. All the environments have their own challenges:

 Mobile systems

o Mobile systems which use wireless communication in shared broadcast medium

have issues related to physical layer such as transmission range, power, battery

power consumption, interfacing with wired internet, signal processing and

interference.

o The issues pertaining to other higher layers include routing, location management,

channel allocation, localization and position estimation, and mobility

management.

o Apart from the above mentioned common challenges, the architectural differences

of the mobile network demands varied treatment. The two architectures are:

 Base-station approach (cellular approach): The geographical region is divided into

hexagonal physical locations called cells. The powerful base station transmits signals to all

other nodes in its range

 Ad-hoc network approach: This is an infrastructure-less approach which do not have

any base station to transmit signals. Instead all the responsibility is distributed among the

mobile nodes.

 It is evident that both the approaches work in different environment with different

principles of communication. Designing a distributed system to cater the varied need is a great

challenge.

 Sensor networks

o A sensor is a processor with an electro-mechanical interface that is capable of

sensing physical parameters.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

o They are low cost equipment with limited computational power and battery life.

They are designed to handle streaming data and route it to external computer

network and processes.

o They are susceptible to faults and have to reconfigure themselves.

o These features introduces a whole new set of challenges, such as position

estimation and time estimation when designing a distributed system .

 Ubiquitous or pervasive computing

o In Ubiquitous systems the processors are embedded in the environment to

perform application functions in the background.

o Examples: Intelligent devices, smart homes etc.

o They are distributed systems with recent advancements operating in wireless

environments through actuator mechanisms.

o They can be self-organizing and network-centric with limited resources.

 Peer-to-peer computing

o Peer-to-peer (P2P) computing is computing over an application layer network

where all interactions among the processors are at a same level.

o This is a form of symmetric computation against the client sever paradigm.

o They are self-organizing with or without regular structure to the network.

o Some of the key challenges include: object storage mechanisms, efficient object

lookup, and retrieval in a scalable manner; dynamic reconfiguration with nodes as

well as objects joining and leaving the network randomly; replication strategies to

expedite object search; tradeoffs between object size latency and table sizes;

anonymity, privacy, and security.

 Publish-subscribe, content distribution, and multimedia

o The users in present day require only the information of interest.

o In a dynamic environment where the information constantly fluctuates there is

great demand for

o Publish: an efficient mechanism for distributing this information

o Subscribe: an efficient mechanism to allow end users to indicate interest in

receiving specific kinds of information

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

o An efficient mechanism for aggregating large volumes of published information

and filtering it as per the user’s subscription filter.

o Content distribution refers to a mechanism that categorizes the information based

on parameters.

o The publish subscribe and content distribution overlap each other.

o Multimedia data introduces special issue because of its large size.

 Distributed agents

o Agents are software processes or sometimes robots that move around the system

to do specific tasks for which they are programmed.

o Agents collect and process information and can exchange such information with

other agents.

o Challenges in distributed agent systems include coordination mechanisms among

the agents, controlling the mobility of the agents, their software design and

interfaces.

 Distributed data mining

o Data mining algorithms process large amount of data to detect patterns and trends

in the data, to mine or extract useful information.

o The mining can be done by applying database and artificial intelligence

techniques to a data repository.

 Grid computing

 Grid computing is deployed to manage resources. For instance, idle CPU cycles

of machines connected to the network will be available to others.

 The challenges includes: scheduling jobs, framework for implementing quality of

service, real-time guarantees, security.

 Security in distributed systems

The challenges of security in a distributed setting include: confidentiality, authentication

and availability. This can be addressed using efficient and scalable solutions.

