
CS8392 1

UNIT-V

EVENT DRIVEN PROGRAMMING

Graphics programming-Frame-Components-working with 2D shapes-Using color, fonts, and images-Basics

of event Handling-event handlers-adapter classes-actions mouse events-AWT event hierarchy-Introduction

to Swing-layout management-Swing Components-Text Fields, Text Areas-Buttons-Check Boxes-Radio

Buttons-Lists-choices-Scrollbars-windows-Menus-Dialog Boxes and Interfaces, Exception handling,

Multithreaded programming, Strings, Input/output

Graphics programming

• Java contains support for graphics that enable programmers to visually enhance applications

• Java contains many more sophisticated drawing capabilities as part of the Java 2D API

AWT

• Java AWT (Abstract Window Toolkit) is an API to develop GUI or window-based applications in

java.

• Java AWT components are platform-dependent i.e. components are displayed according to the view

of operating system.

• AWT is heavyweight i.e. its components are using the resources of OS.The java.awt package

provides classes for AWT api such as TextField, Label, TextArea, RadioButton, CheckBox, Choice,

List etc.

Java AWT Hierarchy

The hierarchy of Java AWT classes are given below.

CS8392 2

Container

The Container is a component in AWT that can contain another components like buttons, textfields,

labels etc. The classes that extend Container class are known as container such as Frame, Dialog and Panel.

Window

The window is the container that has no borders and menu bars. You must use frame, dialog or another

window for creating a window.

Panel

The Panel is the container that doesn't contain title bar and menu bars. It can have other components

like button, textfield etc.

Frame

The Frame is the container that contain title bar and can have menu bars. It can have other components

like button, textfield etc.

There are two ways to create a Frame. They are,

• By Instantiating Frame class

• By extending Frame class

Example:

import java.awt.*;

import java.awt.event.*;

class MyLoginWindow extends Frame

{

TextField name,pass;

Button b1,b2;

MyLoginWindow()

{

setLayout(new FlowLayout());

this. setLayout(null);

Label n=new Label("Name:",Label.CENTER);

Label p=new Label("password:",Label.CENTER);

name=new TextField(20);

pass=new TextField(20);

pass.setEchoChar('#');

b1=new Button("submit");

b2=new Button("cancel");

this.add(n);

this.add(name);

this.add(p);

this.add(pass);

this.add(b1);

this.add(b2);

CS8392 3

n.setBounds(70,90,90,60);

p.setBounds(70,130,90,60);

name.setBounds(200,100,90,20);

pass.setBounds(200,140,90,20);

b1.setBounds(100,260,70,40);

b2.setBounds(180,260,70,40);

}

public static void main(String args[]) {

MyLoginWindow ml=new MyLoginWindow(); ml.setVisible(true);

ml.setSize(400,400);

ml.setTitle("my login window");

}}

Output:

|j>j my login window

password:

Event handling:

Changing the state of an object is known as an event. For example, click on button, dragging mouse

etc. The java.awt.event package provides many event classes and Listener interfaces for event handling.

Event handling has three main components,

• Events : An event is a change in state of an object.

• Events Source : Event source is an object that generates an event.

• Listeners : A listener is an object that listens to the event. A listener gets notified when an

event occur

submit cancel

CS8392 4

How Events are handled ?

A source generates an Event and send it to one or more listeners registered with the source. Once

event is received by the listener, they process the event and then return. Events are supported by a number of

Java packages, like java.util, java.awt and java.awt.event.

Important Event Classes and Interface

Event Classes Description Listener Interface

ActionEvent generated when button is pressed, menu-item is

selected, list-item is double clicked

ActionListener

MouseEvent generated when mouse is dragged,

moved,clicked,pressed or released and also when it

enters or exit a component

MouseListener

KeyEvent generated when input is received from keyboard KeyListener

ItemEvent generated when check-box or list item is clicked ItemListener

TextEvent generated when value of textarea or textfield is

changed

TextListener

MouseWheelEvent generated when mouse wheel is moved Mou seWheelLi stener

WindowEvent generated when window is activated, deactivated,

deiconified, iconified, opened or closed

WindowListener

ComponentEvent generated when component is hidden, moved, resized

or set visible

ComponentEventLi stener

ContainerEvent generated when component is added or removed from

container

ContainerLi stener

AdjustmentEvent generated when scroll bar is manipulated Adj u stmentLi stener

generated when component gains or loses keyboard focus FocusEvent FocusListener

CS8392 5

Steps to handle events:

• Implement appropriate interface in the class.

• Register the component with the listener.

How to implement Listener

1. Declare an event handler class and specify that the class either implements an ActionListener(any

listener) interface or extends a class that implements an ActionListener interface. For example:

public class MyClass implements ActionListener

{

// Set of Code

}

2. Register an instance of the event handler class as a listener on one or more components. For

example:

someComponent.addActionListener(instanceOfMyClass);

3. Include code that implements the methods in listener interface. For example:

public void actionPerformed(ActionEvent e) {

//code that reacts to the action

}

