MATHEMATICS OF ASYMMETRIC KEY CRYPTOGRAPHY

- A number of concepts from number theory are essential in the design of public-key cryptographic algorithms.
- The security of a public key cryptosystem depends on the difficulty of certain computational problems in mathematics.
- A deep understanding of the security and efficient implementation of public key cryptography requires significant background in algebra, number theory and geometry.

PRIMES

- A central concern of number theory is the study of prime numbers.
- An integer $\mathrm{p}>1$ is a prime number if and only if its only divisors are ± 1 and $\pm \mathrm{p}$.
- Any integer a>1 can be factored in a unique way as $a=p_{1}^{a_{1}} \times p_{2}^{a_{2}} \times \cdots \times p_{t}^{a_{t}}$
- where $\mathrm{p} 1<\mathrm{p} 2<\ldots \mathrm{pt}$ are prime numbers and where each a_{i} is a positive integer. This is known as the fundamental theorem of arithmetic;

$$
\begin{aligned}
91 & =7 \times 13 \\
3600 & =2^{4} \times 3^{2} \times 5^{2} \\
11011 & =7 \times 11^{2} \times 13
\end{aligned}
$$

- If P is the set of all prime numbers, then any positive integer can be written uniquely in the following form: $a=\prod_{p \in P} p^{a_{p}} \quad$ where each $a_{p} \geq 0$
- The right-hand side is the product over all possible prime numbers p ; for any particular value of a , most of the exponents a_{p} will be 0 .
- The value of any given positive integer can be specified by simply listing all the nonzero exponents in the foregoing formulation.

The integer 12 is represented by $\left\{a_{2}=2, a_{3}=1\right\}$.
The integer 18 is represented by $\left\{a_{2}=1, a_{3}=2\right\}$.
The integer 91 is represented by $\left\{a_{7}=1, a_{13}=1\right\}$.

- Multiplication of two numbers is equivalent to adding the corresponding exponents.

Given

$$
a=\prod_{p \in \mathrm{P}} p^{a_{p}}, b=\prod_{p \in \mathrm{P}} p^{b_{p}}
$$

- Define $\mathrm{k}=\mathrm{ab}$. We know that the integer k can be expressed as the product of powers of primes: $: k=\prod_{p \in P} p^{k_{p}}$.
- It follows that $k_{p}=a_{p}+b_{p}$ for all $p \in P$

$$
\begin{aligned}
& k=12 \times 18=\left(2^{2} \times 3\right) \times\left(2 \times 3^{2}\right)=216 \\
& k_{2}=2+1=3 ; k_{3}=1+2=3 \\
& 216=2^{3} \times 3^{3}=8 \times 27
\end{aligned}
$$

- Any integer of the form p^{n} can be divided only by an integer that is of a lesser or equal power of the same prime number, p^{j} with $\mathrm{j}<=n$. Thus, we can say the following. Given $a=\prod_{p \in P} p^{a_{P}, b}=\prod_{p \in P} p^{b_{p}}$
- It is easy to determine the greatest common divisor of two positive integers if we express each integer as the product of primes. If $\mathrm{a} \mid \mathrm{b}$, then $a_{p} \leq b_{p}$ for all p.

$$
\begin{aligned}
& a=12 ; b=36 ; 12 \mid 36 \\
& 12=2^{2} \times 3 ; 36=2^{2} \times 3^{2} \\
& a_{2}=2=b_{2} \\
& a_{3}=1 \leq 2=b_{3}
\end{aligned}
$$

Thus, the inequality $a_{p} \leq b_{p}$ is satisfied for all prime numbers.

$$
\begin{aligned}
300 & =2^{2} \times 3^{1} \times 5^{2} \\
18 & =2^{1} \times 3^{2} \\
\operatorname{gcd}(18,300) & =2^{1} \times 3^{1} \times 5^{0}=6
\end{aligned}
$$

PRIMALITY TESTING

- For many cryptographic algorithms, it is necessary to select one or more very large prime numbers at random. Thus, we are faced with the task of determining whether a given large number is prime.
- A primality test is an algorithm for determining whether an input number is prime. Among other fields of mathematics, it is used for cryptography.
- Primality tests do not generally give prime factors, only stating whether the input number is prime or not.

MILLER-RABIN ALGORITHM

- The algorithm due to Miller and Rabin is typically used to test a large number for primality.
- any positive odd integer $\mathrm{n}>=3$ can be expressed as $n-1=2^{k} q \quad$ with $k>0, q$ odd
- To see this, note that $\mathrm{n}-1$ is an even integer.
- Then, divide ($\mathrm{n}-1$) by 2 until the result is an odd number q , for a total of k divisions.

TWO PROPERTIES OF PRIME NUMBERS

Two Properties of Prime Numbers The first property is stated as follows: If p is prime and a is a positive integer less than p, then $a^{2} \bmod p=1$ if and only if either $a \bmod p=1$ or $a \bmod p=-1 \bmod p=p-1$. By the rules of modular arithmetic $(a \bmod p)(a \bmod p)=a^{2} \bmod p$. Thus, if either $a \bmod p=1 \operatorname{or} a \bmod p=-1$, then $a^{2} \bmod p=1$. Conversely, if $a^{2} \bmod p=1$, then $(a \bmod p)^{2}=1$, which is true only for $a \bmod p=1$ or $a \bmod p=-1$

The second property is stated as follows: Let p be a prime number greater than 2 . We can then write $p-1=2^{k} q$ with $k>0, q$ odd. Let a be any integer in the range $1<a<p-1$. Then one of the two following conditions is true.

1. a^{q} is congruent to 1 modulo p. That is, $a^{q} \bmod p=1$, or equivalently, $a^{q}=1(\bmod p)$.
2. One of the numbers $a^{q}, a^{2 q}, a^{4 q}, \ldots, a^{2^{k-1}} q$ is congruent to -1 modulo p. That is, there is some number j in the range $(1 \leq j \leq k)$ such that $a^{2{ }^{j-1} q}$ $\bmod p=-1 \bmod p=p-1$ or equivalently, $a^{2^{j-1}} q \equiv-1(\bmod p)$.

ALGORITHM

```
TEST (n)
1. Find integers k, q, with k>0, q odd, so that
    (n-1 = 2
2. Select a random integer a,1<a<n - 1;
3. if a }\mp@subsup{a}{}{q}\operatorname{mod}n=1 then return("inconclusive")
4. for j =0 to k-1 do
5. if a a }\mp@subsup{}{}{2j}\operatorname{mod}n=n-1 then return("inconclusive")
6. return("composite");
```


FACTORIZATION

- Prime factorization (or integer factorization) is a commonly used mathematical problem often used to secure public-key encryption systems.
- A common practice is to use very large semi-primes (that is, the result of the multiplication of two prime numbers) as the number securing the encryption.

Prime factorization

- To factor a number N is to write it as a product of other numbers: $\mathrm{n}=\mathrm{a} \times \mathrm{X}$ X C
- Note that factoring a number is relatively hard compared to multiplying the factors together to generate the number
- The prime factorisation of a number N is when its written as a product of primes
- Eg. $91=7 \times 13 ; 3600=2^{4} \times 3^{2} \times 5^{2}$

RELATIVELY PRIME NUMBERS \& GCD

- Two numbers a, b arerelatively prime if have no common divisors apart from 1
- eg. $8 \& 15$ are relatively prime since factors of 8 are $1,2,4,8$ and of 15 are $1,3,5,15$ and 1 is the only common factor
- Conversely can determine the greatest common divisor by comparing their prime factorizations and using least powers
- eg. $300=2^{1} \times 3^{1} \times 5^{2} 18=2^{1} \times 3^{2}$ hence $\operatorname{GCD}(18,300)=2^{1} \times 3^{1} \times 5^{0}=6$

