
 
  
UNIT-1                      ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

CSE: II/IV                                                                                                      CS8451-DESIGN AND ANALYSIS OF ALGORITHM 

4. FUNDAMENTALS OF THE ANALYSIS OF ALGORITHM EFFICIENCY 

 

The efficiency of an algorithm can be in terms of time and space. The 

algorithm efficiency can be analyzed by the following ways. 

a. Analysis Framework. 
b. Asymptotic Notations and its properties. 
c. Mathematical analysis for Recursive algorithms. 

d. Mathematical analysis for Non-recursive algorithms. 

 

1.1 Analysis Framework 

There are two kinds of efficiencies to analyze the efficiency of any algorithm. 

They are: 

• Time efficiency, indicating how fast the algorithm runs, and 

• Space efficiency, indicating how much extra memory it uses. 

 

The algorithm analysis framework consists of the following: 

• Measuring an Input’s Size 
• Units for Measuring Running Time 
• Orders of Growth 
• Worst-Case, Best-Case, and Average-Case Efficiencies 

 

(i) Measuring an Input’s Size 

• An algorithm’s efficiency is defined as a function of some parameter n 

indicating the algorithm’s input size. In most cases, selecting such a 

parameter is quite straightforward. For example, it will be the size of the list 

for problems of sorting, searching. 

• For the problem of evaluating a polynomial p(x) = anx
n+ . . . + a0 of degree 

n, the size of  the parameter will be the polynomial’s degree or the number 

of its coefficients, which is larger by 1 than its degree. 

• In computing the product of two n × n matrices, the choice of a parameter 
indicating an input size does matter. 

• Consider a spell-checking algorithm. If the algorithm examines individual 
characters of its input, then the size is measured by the number of characters. 

• In measuring input size for algorithms solving problems such as checking 

primality of a positive integer n. the input is just one number. 

• The input size by the number b of bits in the n’s binary representation is 

b=(log2n)+1. 

 

 



 
  
UNIT-1                      ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

CSE: II/IV                                                                                                      CS8451-DESIGN AND ANALYSIS OF ALGORITHM 

(ii) Units for Measuring Running Time 

Some standard unit of time measurement such as a second, or millisecond, 

and so on can be used to measure the running time of a program after implementing 

the algorithm Drawbacks, 

• Dependence on the speed of a particular computer. 
• Dependence on the quality of a program implementing the 

algorithm. 
• The compiler used in generating the machine code. 

The difficulty of clocking the actual running time of the program. So, we need metric 

to measure an algorithm’s efficiency that does not depend on these extraneous 

factors.One possible approach is to count the number of times each of the 

algorithm’s operations is executed. This approach is excessively difficult. 

The most important operation (+, -, *, /) of the algorithm, called the basic 

operation. Computing the number of times, the basic operation is executed is 

easy. The total running time is basic operations count. 

 

(iii)ORDERS OF GROWTH 

• A difference in running times on small inputs is not what really 

distinguishes efficient algorithms from in efficient ones. 

• For example, the greatest common divisor of two small numbers, it is not 
immediately clear how much more efficient Euclid’s algorithm is compared 
to the other algorithms, the difference in algorithm efficiencies becomes 

clear for larger numbers only. 
• For large values of n,  
• it is the function’s order of growth that counts just like theTable1.1, 

which contains values of a few functions particularly important for analysis 
of algorithms. 

 

TABLE 1.1 Values (approximate) of several functions important for analysis of 

algorithms 

 

N   
√ 

log2n n n log2n n2 n3 2n n! 

1 1 0 1 0 1 1 2 1 

2 1.4 1 2 2 4 4 4 2 

4 2 2 4 8 16 64 16 24 

8 2.8 3 8 2.4•101 64 5.1•10
2 

2.6•102 4.0•104 

10 3.2 3.3 10 3.3•101 102 103 103 3.6•106 



 
  
UNIT-1                      ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

CSE: II/IV                                                                                                      CS8451-DESIGN AND ANALYSIS OF ALGORITHM 

16 4 4 16 6.4•101 2.6•10
2 

4.1•10
3 

6.5•104 2.1•101

3 
102 10 6.6 10

2 
6.6•102 104 106 1.3•103

0 
9.3•101

57 
103 31 10 10

3 
1.0•104 106 109  

Very big 
computati

on 

104 102 13 10
4 

1.3•105 108 1012 

105 3.2•10
2 

17 10
5 

1.7•106 1010 1015 

106 103 20 10
6 

2.0•107 1012 1018 

 

(iii) Worst-Case, Best-Case, and Average-Case 

Efficiencies Consider Sequential Search 

algorithm some search key K ALGORITHM 

Sequential Search (A[0..n 1],K) 

//Searches for a given value in a given array by sequential search 

//Input: An array A[0..n - 1] and a search key K 

//Output: The index of the first element in A that matches K or -1 if there 

are no 

// matching elements 

i ←0 

while i < n and A[i] ≠ K do 

i ←i + 1 

if i < n 

return i 

else 

return- 1 

Clearly, the running time of this algorithm can be quite different for the same list 

size n. 

 

In the worst case, there is no matching of elements or the first matching 

element can found at last on the list. In the best case, there is matching of elements 

at first on the list. 

 



 
  
UNIT-1                      ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

CSE: II/IV                                                                                                      CS8451-DESIGN AND ANALYSIS OF ALGORITHM 

Worst-case efficiency 

• The worst-case efficiency of an algorithm is its efficiency for the worst 

case input of size n. 
• The algorithm runs the longest among all possible inputs of that size. 
• For the input of size n, the running time is Cworst(n) =n. 

Best case efficiency 

• The best-case efficiency of an algorithm is its efficiency for the best case 

input of size n. 
• The algorithm runs the fastest among all possible inputs of that size n. 

• In sequential search, if we search a first element in list of size n. (i.e. first 
element equal to a search key), then the running time is Cbest(n) =1 

 

Average case efficiency 

• The Average case efficiency lies between best case and worst case. 
• To analyze the algorithm’s average case efficiency, we must make some 

assumptions about possible inputs of size n. 
• The standard assumptions are that 

o The probability of a successful search is equal to p (0 ≤ p ≤ 1)and 
o The probability of the first match occurring in the ith position of the  

 
list is the same for every i. Yet another type of efficiency is called amortized 

efficiency. It applies not to a single run of an algorithm but rather to a sequence of 
operations performed on the same data structure. 

 

 


