
ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

EC8552 COMPUTER ARCHITECTURE AND ORGANIZATION

Logical Operations MIPS

Instructions
Shift left sll

Shift right srl

Bit by bit AND and, andi

Bit by bit OR or, ori

Bit by bit NOT nor

1.5 Logical Operations

The following are the logical operations performed by the processor:

The first class of such operations is called shifts. They move all the bits in a word to the

left or right, filling the emptied bits with 0s.

0000 0000 0000 00000 000 0000 0000 0000 10012= 910 After left shifting by four,

the new value is 144.

0000 0000 0000 0000 0000 0000 0000 1001 00002= 14410

 Left shift: Left shifting by i bits is equivalent to multiplying the number by 2i.

 Right Shift: Right shifting by i bits is equivalent to dividing the number by 2i.

 AND: This is used in masking of bits.

 OR: It is a bit-by-bit operation that places a 1 in the result if either operand bit is a 1

 NOT: A logical bit-by-bit operation with one operand that inverts the bits;

that is, it replaces every 1 with a 0, and every 0 with a 1.

 NOR: A logical bit-by-bit operation with two operands that calculates the NOT

of the OR of the two operands.

Category Instruction Operation

AND and $s1, $s2, $s3 S1=s2&s3

OR or $s1, $s2, $s3 S1=s2|s3

NOR nor $s1, $s2, $s3 S1=~(s2|s3)

NAND nand $s1, $s2, $s3 S1=~(s2&s3)

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

EC8552 COMPUTER ARCHITECTURE AND ORGANIZATION

AND immediate andi $s1, $s2, 100 S1=s2&100

OR immediate Ori $s1, $s2, $s3 S1=s2|100

Shift left logical Sll $s1, $s2, 10 S1=s2<<10

Shift right logical Srl $s1, $s2, 10 S1=s2>>10

Control Operations

Decision making and branching makes the computers more powerful.

Decision Making:

Decision making in MIPS assembly language includes two decision-making

instructions

(conditional branches):

i) Branch if Equal (BEQ):

beq register1, register2, L1

In this instruction, the go to the statement labeled L1 if the value in register1 is equal

to the value in register2.

i) Branch if not Equal (BNE): bne register1, register2, L1

In this instruction, the go to the statement labeled L1 if the value in register1 does

not equal the value in register2.

Example:

Consider the following statement,

if (i == j) f = g + h; else f = g – h;

Conditional branch is an instruction that requires the comparison of two values

and that allows for a subsequent transfer of control to a new address in the

program based on the outcome of the comparison.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

EC8552 COMPUTER ARCHITECTURE AND ORGANIZATION

Fig 1 Flowchart for if (i == j) f = g + h; else f = g – h;

The instruction first compares for equality, using beq. In general, the code will be more

efficient if we test for the opposite condition to branch over the code that performs the

subsequent then part of if (the label Else is defined below):

bne $s3,$s4,Else # go to Else if i =j

The next assignment statement performs a single operation, and if all the operands are

allocated to registers, it is just one instruction:

add $s0,$s1,$s2 # f = g + h (skipped if i =j)

This instruction says that the processor always follows the branch. To distinguish

between conditional and unconditional branches, the MIPS name for this type of instruction

is jump, abbreviated as j (the label Exit is defined below). j Exit # go to Exit

The assignment statement in the else portion of if statement can again be compiled

into a single instruction. We just need to append the label Else to this instruction. We also

show the label Exit that is after this instruction, showing the end of the if-then-else compiled

code:

Else: sub $s0, $ s1, $s2 # f = g – h

(skipped if i = j) Exit:

Compilers create branches and labels wherever necessary for maintaining flow of the

program. Also, the assembler calculates the addresses and relieves the compiler and the

assembly language programmer.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

EC8552 COMPUTER ARCHITECTURE AND ORGANIZATION

k

A sequence of instructions without branches except possibly at the end and without

branch targets or branch labels except possibly at the beginning are called

basic blocks.

A table of addresses of alternative instruction sequences is maintained in jump

address table.

Looping:

When a set of statements has to be executed more number of times, looping statements

are used.

Example:

while (save[i] == k) i += 1;

i and k correspond to registers $s3 and $s5 and the base of the array save is in $s6.

The MIPS instructions are:

 The first step is to load save[i] into a temporary register. This operation

needs an address. Multiply the index i by 4 and add i to the base of array to

obtain the address.

 Add the label Loop to it to branch back to that instruction at the end of the

loop: Loop: sll $t1,$s3,2 # Temp reg $t1 = 4 * i

 To get the address of save[i] , add $t1 and the base of save in $s6:

add $t1,$t1,$s6 # $t1 = address of save[i]

 Use that address to load save[i] into a temporary register:

lw $t0,0($t1) # Temp reg $t0 = save[i]

 The next instruction performs the loop test, exiting if save[i] k: bne $t0,$s5,

Exit # go to Exit if save[i]

 The next instruction adds 1 to i :

add $s3,$s3,1 # i = i + 1

 The end of the loop branches back to the while test at the top of the loop. Add

the Exit label after it:

j Loop # go to Loop

Exit:

Grouping on instructions that makes compiling easy is through partitioning

the assembly language instructions into basic blocks.

Case / Switch Statements

These statements allow the programmers to select one among the many

options. The simple way is to implement switch is through a sequence of conditional

tests using a chain of if- then-else statements. The alternatives are encoded in jump

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

EC8552 COMPUTER ARCHITECTURE AND ORGANIZATION

address table. The program needs only to index into the table and then jump to the

appropriate sequence.

The jump table is an array of words containing addresses that correspond to labels in the code.

MIPS include a jump register instruction (jr), to support the unconditional jump to the address

specified in a register. The program loads the appropriate entry from the jump table into a register,

and then it jumps to the proper address using a jump register.

Category Instruction Operation

Conditional Branch Beq $s1, $s2,L If (s1==s2) then goto L (Branch if equal)

 Bne $s1, $s2,L If (s1 s2) then goto L (Branch if not equal)

 Slt $s1, $s3, $s3 If (s2<s3) set s1=1Else s1=0(set on less than)

 Slt$s1, $s2, 100 If (s2<100) set s1=1Else s1=0(set on less than

Immediate)

Un Conditional

Branch

J L Go to L(Jump to target address L)

