Rohini College of Engineering \& Technology

UNIT IV DESIGN OF COLUMNS

Abstract

Types of columns -Axially Loaded columns - Design of short Rectangular Square and circular columns -Design of Slender columns- Design for Uniaxial and Biaxial bending using Column Curves

Determine the reinforcement to be provided in a circular column with the following data:

Diameter of column 500 mm
Grade of concrete M20
Factored moment 125 kN.m
Characteristic strength $250 \mathrm{~N} / \mathrm{mm}^{2}$
Factored load 1600 kN
Lateral reinforcement:
(a)Hoop reinforcement
(b) Helical reinforcement
(Assume moment due to minimum eccentricity to be less than the actual moment).
Assuming 25 mm bars with 40 mm cover,
$\mathrm{d}^{1}=40+12.5=52.5 \mathrm{~mm}$
$\mathrm{d}^{1 / D}-52.5 / 50=0.105$
Charts for $d^{\prime} / D=0.10$ will be used.
Let $b=D$
(a) Column with hoop reinforcement
$\frac{P_{u}}{f_{c k} D^{2}}=\frac{1600 \times 10^{3}}{20 \times 500^{2}}=0.32$
$\frac{M_{u}}{f_{c k} D^{3}}=\frac{125 \times 10^{6}}{20 \times 500^{3}}=0.05$
Referring to Chart 52, for $f_{y}=250 \mathrm{~N} / \mathrm{mm}^{2}$

$$
\frac{P}{f_{c k}}=0.87
$$

Percentage of reinforcement, $\mathrm{p}=0.87 \times 20=1.74 \%$

$$
A_{s}=\frac{1.74}{100} \times \frac{\Pi \times 500^{2}}{4}=3416 \mathrm{~mm}^{2}
$$

Rohini College of Engineering \& Technology

(b) Column with Helical Reinforcement

According to 38.4 of the Code, the strength of a compression member with helical reinforcement is 1.05 times the strength of a similar member with lateral ties. Therefore, the, given load and moment should be divided by 1.05 before referring to the chart.
$\frac{P_{u}}{f_{c k} D^{2}}=\frac{1600 \times 10^{3}}{1.05 \times 20 \times 500^{2}}=0.31$
$\frac{M_{u}}{f_{c k} D^{3}}=\frac{125 \times 10^{6}}{1.05 \times 20 \times 500^{3}}=0.048$

Hence, From Chart 52, for $\mathrm{f}_{\mathrm{y}}=250 \mathrm{~N} / \mathrm{mm}^{2}$,

$$
\begin{gathered}
\frac{P}{f_{c k}}=0.078 \\
\mathrm{p}=0.078 \times 20=1.56 \% \\
A_{s}=\frac{1.56}{100} \times \frac{\Pi \times 500^{2}}{4}=3063 \mathrm{~mm}^{2}
\end{gathered}
$$

According to 38.4.1 of the Code the ratio of the volume of helical reinforcement to the volume of the core shall not be less than

$$
0.36\left(\frac{A_{g}}{A_{c}}-1\right) \times \frac{f_{c k}}{f_{y}}
$$

where A_{g} is the gross area of the section and A_{c} is the area of the core measured to the outside diameter of the helix. Assuming 8 mm dia bars for the helix

Core diameter $=500-2(40-8)=436 \mathrm{~mm}$

$$
\begin{gathered}
\frac{A_{g}}{A_{c}}=\frac{500}{436}=1.315 \\
0.36\left(\frac{A_{g}}{A_{c}}-1\right) \times \frac{f_{c k}}{f_{y}}=0.36\left(\frac{500}{436}-1\right) \times \frac{20}{250}=0.0091
\end{gathered}
$$

Volume of helical reinforcement / Volume of core
$A_{s h} \Pi \times 428 /\left(\Pi / 4 \times 436^{2}\right) s_{h}$
$\Rightarrow 0.9 \frac{A_{s h}}{S_{h}}$
where, A_{sh} is the area of the bar forming the helix and s_{h} is the pitch of the helix. In order to satisfy the codal requirement,
0.09 Ash / $\mathrm{s}_{\mathrm{h}}=0.0091$

For 8 mm dia bar, $\mathrm{S}_{\mathrm{h}}=0.09 \times 50 / 0.0091=49.7 \mathrm{~mm}$.
Thus provide 48 mm pitch

