
 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT-II EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

Pointers in C Programming

A pointer is variable which stores address of another variable.

Pointers can only store addresses of other variable.

Note :Here %u is a format specifier. It stands for unsigned, so it will only display positive values.

You will get output of the above program like below.

605893 605897

&-address of operator.

& is the “address of” operator. It is used to tell the C compiler to refer to the address of variables.

Address of any variable can’t be negative. This is the reason %u format specifier is used to print the

address of variables on the screen.

value at address (*) Operator

This is the second operator used for pointers. It is used to access the value present at some

address. And it is used to declare a pointer.

int x=10, y=20;

printf(“%u %u”, &x, &y);

Declaration and initialization of pointers

int x=10;

int *ptr; // Declaration of Pointer variable

ptr=&x; // Storing address of x variable in y pointer variable

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT-II EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

Example program-1

#include<stdio.h>

void main()

{

int a=6,b=12;

int *x,*y;

x=&a;

y=&b;

printf("%d t %d n",a,b);

printf("%u t %u n",&a,&b);

printf("%u t %u n",x,y);

printf("%d t %d n",*x,*y);

printf("%d t %d",(&a),(&b));

printf("%d t %d",*(&a),*(&b));

}

A pointer is a variable whose value is the memory address of another
variable

syntax

Here, type is the pointer's base type; it must be a valid C data type and var-
name is the name of the pointer variable.

6 12
65524 65522
65524 65522
6 12
65524 65522
6 12

#include <stdio.h>
int main ()
{

int var = 20;
int *ip;
ip = &var;

/* actual variable declaration */
/* pointer variable declaration */

/* store address of var in pointer variable*/

printf("Address of var variable: %x\n", &var);
/*address stored in pointer variable*/

printf("Address stored in ip variable: %x\n", ip);
/*access the value using the pointer */

printf("Value of *ip variable: %d\n", *ip);
return 0;

}

type *var-name;

int *ip;
double *dp;
float *fp;
char *ch

/* pointer to an integer */
/* pointer to a double */
/* pointer to a float */
/* pointer to a character */

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT-II EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

NULL Pointers

A pointer that is assigned NULL is called a null pointer.

The NULL pointer is a constant with a value of zero.

It is always a good practice to assign a NULL value to a pointer variable in
case you do not have an exact address to be assigned.

Incrementing a Pointer(32-bit)

#include <stdio.h>
int main ()
{

int *ptr = NULL;
printf("The value of ptr is : %x\n", ptr);
return 0;

}

output
The value of ptr is 0

#include <stdio.h>
const int MAX = 3;
int main () {

int var[] = {10, 100, 200};
int i, *ptr;

/* let us have array address in pointer */
ptr = var;

for (i = 0; i < MAX; i++) {
printf("Address of var[%d] = %x\n", i, ptr);
printf("Value of var[%d] = %d\n", i, *ptr);

/* move to the next location */
ptr++;

}

return 0;
}

output

Address of var[0] = bf882b30
Value of var[0] = 10
Address of var[1] = bf882b34
Value of var[1] = 100
Address of var[2] = bf882b38
Value of var[2] = 200

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT-II EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

Decrementing a Pointer(32-bit machine)
decreases its value by the number of bytes of its data type.

Program for pointer arithmetic(32-bit machine)
#include <stdio.h>
int main()
{

int m = 5, n = 10, val = 0;
int *p1;
int *p2;
int *p3;

p1 = &m; //printing the address of m
p2 = &n; //printing the address of n

printf("p1 = %d\n", p1);
printf("p2 = %d\n", p2);

printf(" *p1 = %d\n", *p1);
printf(" *p2 = %d\n", *p2);

val = *p1+*p2;
printf("*p1+*p2 = %d\n", val);//point 1

p3 = p1-p2;
printf("p1 - p2 = %d\n", p3); //point 2

#include <stdio.h>
const int MAX = 3;
int main () {

int var[] = {10, 100, 200};
int i, *ptr;

/* let us have array address in pointer */
ptr = &var[MAX-1];
for (i = MAX; i > 0; i--) {
printf("Address of var[%d] = %x\n", i-1, ptr);
printf("Value of var[%d] = %d\n", i-1, *ptr);

/* move to the previous location */
ptr--;

}

return 0;
}

output
Address of var[2] = bfedbcd8
Value of var[2] = 200
Address of var[1] = bfedbcd4
Value of var[1] = 100
Address of var[0] = bfedbcd0
Value of var[0] = 10

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT-II EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

p1++;
printf("p1++ = %d\n", p1); //point 3

p2--;
printf("p2-- = %d\n", p2); //point 4

return 0;
}

OUTPUT

p1 = 2680016
p2 = 2680012

*p1=5;
*p2=10;

*p1+*p2 = 15

p1-p2 = 1
p1++ = 2680020

p2-- = 2680008

	Pointers in C Programming
	Example program-1

