REINFORCED CONCRETE CANTILEVER AND COUNTER FORT RETAINING WALL

1.1 Retaining wall

A retaining wall is a structure, designed and constructed to resist the lateral pressure of soil.

Fig.1.1 Cantilever retaining wall

Fig.1.2 Counter fort retaining wall

Fig.1.3 Cantilever retaining wall

1.2 Design for Cantilever Retaining wall For Stem

Example 1

Design a stem for cantilever retaining wall to retain an earth embankment with a horizontal top 4m above ground level. Density of earth = 18 KN/m^3 . Angle of internal friction $\emptyset = 30 \text{ degree}$. SBC of soil = 200 KN/m^2 . Coefficient of friction between soil and concrete = 0.5. Adopt M20 grade concrete and Fe 415 HYSD bars.

Given data:

Density of earth $\gamma' = 18 \text{ KN/m}^3$

Angle of internal friction 'Ø' = 30

SBC of soil $'q' = 200 \text{ KN/m}^2$

Fig.1.4 Cantilever retaining wall

Step 1: Dimensions of retaining wall

(a) Depth of foundation =
$$q / \gamma (1 - \sin \emptyset / 1 + \sin \emptyset)^2$$

= $200 / 18 (1 - \sin 30 / 1 + \sin 30)^2$
= $1.2m$

Fig.1.5 Cantilever retaining wall (Depth of foundation)

(b) Overall depth of wall
$$= 4 + 1.2$$

'H =
$$5.2$$
m = 5200 mm

Fig.1.6 Cantilever retaining wall (Overall depth of wall)

(d) Height of stem 'h' =
$$5200 - 450$$

= 4750 mm
= 4.75 m

Fig.1.7 Cantilever retaining wall (Thickness of base slab)

(e) Width of base slab 'b' =
$$0.5H$$
 to $0.6H$ = 2600 to 3120 = 3000 mm

Fig.1.8 Cantilever retaining wall (Width of base slab)

Step 2: Design of stem

(a) Max BM at base

'M' = Ka (
$$\gamma$$
 h^3 / 6)
i.e Ka = (1- sin Ø / 1+ sin Ø)
= (1 / 3) (18 x 4.75^3 / 6)
= 107.2 KNm

(b) Effective depth required

$$d = \sqrt{\frac{Mu}{0.138 \times fck \times b}}$$

$$d = \sqrt{\frac{161 \times 10^6}{0.138 \times 20 \times 10^3}}$$

$$= 241.5 \sim 242 \text{mm}$$

i.e b =
$$1000 \text{mm}$$

= 10^{3}mm
fck = 20 N/mm^{2}

(b) Effective depth at base of stem

overall depth 'D' =
$$450$$
mm
cover = 50 mm

effective depth 'd' = D - 50

$$=450-50$$

= 400 mm

(c) Find Ast

Mu =
$$(0.87 \text{ fy Ast d})[(1-\text{Ast fy})/(\text{b d fck})]$$

Page no. 96, IS 456:2000

$$161 \times 10^6 = (0.87 \times 415 \times Ast \times 400) [(1-415 \times Ast) / (1000 \times 400 \times 20)]$$

$$161 \times 10^6 = (144.42 \times 10^3 \text{ Ast}) [(1 - 5.187 \times 10^5 \text{ Ast})]$$

$$161 \times 10^6 = (144.42 \times 10^3 \text{ Ast}) - (7.49 \text{ Ast}^2)$$

$$161 \times 10^6 - (144.42 \times 10^3 \text{ Ast}) + (7.49 \text{ Ast}^2) = 0$$

(using calculator) mode > Eqn > degree > 2

$$a = 7.49$$

$$b = -144.42 \times 10^{3}$$

$$c = 161 \times 10^{6}$$

$$x1 = 18093 \text{mm}^2$$

$$x2 = 1188 \text{mm}^2$$

Ast
$$= 1188 \text{ mm}^2$$

Find spacing

Provide 16mm dia bars

Spacing =
$$1000 \text{ x} [(\pi d^2 / 4) / \text{Ast}]$$

= $1000 \times [(\pi \times 16^2 / 4) / 1188]$

= 169.24 ~ 170mm

Provide 16mm dia bars at 170mm c/c

Find distribution reinforcement

Ast (dist) =
$$(0.12 / 100) \times bD$$

= $(0.12 / 100) \times 1000 \times 450$
= 540 mm^2

Provide 10mm dia bars

Spacing =
$$1000 \times (\pi d^2 / 4) / Ast$$

= $1000 \times [(\pi \times 10^2 / 4) / 540]$
= $145mm$

Provide 10mm dia bars at 145mm c/c

Provide 10mm dia bars at 290mm c/c on both faces

Step 3: Stability calculation

Fig.1.8 Cantilever retaining wall (Stability calculation)

(a) Find load

w1 =
$$(b \times d \times \gamma c) + (\frac{1}{2} \times bh \times \gamma c)$$

= $(0.2 \times 4.75 \times 24) + (\frac{1}{2} \times 0.25 \times 4.75 \times 24)$
= $22.80 + 14.25$
= 37.05 KN

Fig.1.8 Cantilever retaining wall (Stability calculation)

$$w2 = b x d x \gamma c$$

$$= 3 x 0.45 x 24$$

$$= 32.40 KN$$

$$w3 = b x d x \gamma s$$

$$= 1.55 x 4.75 x 18$$

$$= 132.50 KN$$

$$Total load = w1 + w2 + w3$$

$$= 201.95 KN$$

(b)Find moment @ a

M1 = W1 x Length
=
$$(22.80 \text{ x } 1.65) + (14.25 \text{ x } 1.83)$$

= $37.62 + 26.07$
= 63.69 KNm
M2 = W2 x Length
= $32.40 \text{ x } 1.5$
= 48.60 KNm
M3 = W3 x Length
= $132.50 \text{ x } 0.78$
= 103.35 KNm
M4 = 107.2 KNm (Moment at base)
Total moment M = M1 + M2 + M3 + M4

Point of application

$$Z = \sum M / \sum W$$

= 322.81 / 201.95
= 1.6m

=322.81 KNm

Eccentricity

e =
$$Z - b/2$$

= $1.6 - (3/2)$
= 0.1 m
i.e b = 3 (width of base slab)

$$e < b/6$$
 $b/6 = 3/6$
 $= 0.5$
 $0.1 < 0.5$

Hence safe

Max and Min pressure at base

$$\sigma = \sum W / b [1 \pm (6e / b)]$$
$$= 201.95/3 [1 \pm (6 \times 0.1 / 3)]$$

omax =
$$67.32 [1 + 0.2]$$

= 80.78 KN/m^2
omin = $67.32 [1 - 0.2]$
= 53.85 KN/m^2

Fig.1.9 Cantilever retaining wall (Stability calculation Top view)

Step 4 : Check for safety against sliding

$$P = Ka \times \gamma (H^2/2)$$

$$= (1/3) \times 18 \times (5.2^2/2)$$

$$= 81.12KN$$
i.e Ka = (1- sin Ø / 1+ sin Ø)
$$= (\mu W / P)$$

$$= (0.5 \times 201.95 / 81.12)$$

$$= 1.24 < 1.5$$

 $\mu = 0.5$ (given)

Since the wall is unsafe, so a shear key is to be designed below the stem

Step 5 : Design of shear key

Intensity of passive pressure in shear key front

Pp = KP x (
$$\sigma$$
max)pressure in shear key front
KP = (1+ $\sin \emptyset$ / 1- $\sin \emptyset$)
= (1+ $\sin 30$ / 1- $\sin 30$)
= 3
Pp = KP x (σ max)pressure in shear key front
= 3 x 71.78
= 215.34 KN/m^2
Passive force PF = PP x a
= 215.34 x 0.45
= 97KN

F.O.S against sliding =[(
$$\mu$$
W + PF) / P] = {[(0.5 x 201.95) + 97] / 81.12} = 2.4 > 1.5

Hence safe

Minimum % of reinforcement in shear key

Ast =
$$(0.3/100) \times bD$$

= $0.003 \times 1000 \times 450$
= 1350mm^2

Provide 16mm dia bars

Spacing =
$$1000 \times (\pi d^2 / 4) / Ast$$

= $1000 \times [(\pi \times 16^2 / 4) / 1350]$
= $148.9 \text{mm} \sim 150 \text{mm}$

Provide 16mm dia bars at 150mm c/c

Step 6 : Find shear stress

Shear force 'V' =
$$1.5P - \mu W$$

= $(1.5 \times 81.12) - (0.5 \times 201.95)$
= $20.7KN$

Factored Shear force

'Vu' =
$$20.7 \times 1.5$$

= 31.05 KN

Shear stress '
$$\tau v$$
' = Vu / bd
= 31.05 x 10^3 / (1000 x 400)
= 0.077 N/mm^2

Find τc

$$100 \text{Ast / bd} = 100 \text{ x } 1350 / (1000 \text{ x } 400)$$

= 0.335 N/mm^2

Table 19, page no. 73, IS 456 2000

$$(0.36+0.48)/2 = 0.42$$

$$\tau c = 0.42 \text{ N/mm}^2$$

 $\tau c > \tau v$

Hence safe

Reinforcement detail

Fig.1.10 Cantilever retaining wall (Reinforcement details cross section)

Fig.1.11 Cantilever retaining wall (Reinforcement details Longitudinal cross section)