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VOLTAGE CONTROLLED OSCILLATOR 

 

One important factor in circuit design is the physical dimensions of the circuit elements and 

interconnects with respect to the wavelength of the signal being processed. When the signal 

frequency is low enough so that the physical dimensions of the interconnect are less than 

about one-tenth the signal wavelength, we can assume that different points along the wire are 

at the same potential and have the same current. 

From a practical point of view, this is a satisfactory assumption that significantly simplifies 

the low-frequency circuit design. However, as we go to higher frequencies, we might need to 

describe the signal as a wave traveling along the wire. In this case, the signal magnitude is a 

function of both time and position. 

  

The Signal of a Voltage Wave Traveling Along a Wire 

As an example, consider applying a sinusoidal input Vscos(⍵t) with a source impedance of 

Rs to a load impedance RL through a pair of long wires (Figure 1(a)).  

  

 

Figure 1. An example using a pair of long wires (a), a waveform of a sinusoidal function 

of time (b), and a waveform showing the voltage along the wire (c). 

  

https://www.allaboutcircuits.com/textbook/direct-current/chpt-1/voltage-current/
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Suppose that the wire, which is in the x-axis direction, has a length much greater than the 

signal wavelength. Also, assume that the interconnect has a uniform structure and different 

parameters, such as the conductor dimensions, the spacing between the conductors, etc., are 

the same along the wire. 

The steady-state voltage and current signals that appear along the wire depend on the value of 

a number of parameters; however, in order to paint a qualitative picture of this circuit’s 

behavior, we’ll assume that the voltage wave can be described by Equation 1: 

  

v ( x , t) = A cos ( ω t − β x ) v(x,t)=Acos(ωt−βx) 

Equation 1. 

  

Where A and β are some constants that depend on the circuit parameters. As shown, the 

voltage signal is a function of both time (t) and position (x). At a fixed position x = x1, the βx 

term is a constant phase term, and the above waveform is simply a sinusoidal function of time 

(Figure 1(b)). The period T of this sinusoidal function is: 

  

ω Δt = 2 π⇒ T = Δt = 2 πω ωΔt=2π⇒T=Δt=2πω 

  

To examine the waveform dependency concerning position, we can look at the waveform at a 

particular instant in time t = t1. In this case, the term ⍵t turns into a constant phase term, and 

we observe that the voltage signal is a sinusoidal function of position x. The example 

waveform in Figure 1(c) shows how the voltage along the wire varies sinusoidally along the 

interconnect at a given point in time. This waveform can be considered a periodic function of 

x over the wire length. The period is given by: 

  

β Δ x = 2 π⇒ Δ x = 2 π β βΔx=2π⇒Δx=2πβ 

  

The above equation specifies the distance between two consecutive equal values of the signal 

along the wire at a given moment of time. This is actually the definition of the wavelength 
that is commonly denoted by Equation 2: 

  

λ = 2 π β λ=2πβ 

Equation 2. 

  

Direction and Speed of Propagation 
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Just like water waves that travel in a particular direction, electrical waves also propagate in a 

specific direction. As an example, consider the wave function in Equation 1. At a given time 

(t2), the function value at position (x2) is: 

  

 v ( x 2 , t2) = A cos ( ω t2 − β x 2) v(x2,t2)=Acos(ωt2−βx2) 

  

With that in mind, assume that this value corresponds to point A in Figure 2(a). 

  

 

Figure 2. Example waveforms where (a) shows the position (x2) is A, and (b) shows the 

position (x3) is A. which shifts to the right. 

  

In what direction point A is going to move as time passes? If the next position of point A is 

x3 at time, t3, (Figure 2(b)), we should have: 

  

v ( x 3 , t3) = v ( x 2 , t2) ⇒cos ( ω t3 − β x 3) = cos ( ω t2 − β x

2) v(x3,t3)=v(x2,t2)⇒cos(ωt3−βx3)=cos(ωt2−βx2) 

  

Which simplifies into Equation 3: 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

  

ω t2 − β x 2 = ω t3 − β x 3 ⇒x 3 −x 2t3 − t2 = ω β ωt2−βx2=ωt3−βx3

⇒x3−x2t3−t2=ωβ 

Equation 3. 

  

Assuming that β is a positive value and noting that t3 > t2, x3 should be larger than x2. In 

other words, point A travels in the positive x direction. However, you might wonder, what 
about the following wave function in Equation 4? 

  

v ( x , t) = A cos ( ω t + β x ) v(x,t)=Acos(ωt+βx) 

Equation 4. 

  

The next position of a given point on this wave corresponds to the x value that keeps ⍵t + βx 

constant. Since the term ⍵t increases with time, x should decrease. Therefore, this wave 

travels in the negative x direction. Equation 3 actually gives the speed of propagation (also 

known as the phase velocity (vp) of the wave): 

  

vp = ω β vp=ωβ 

  

RF Wave Reflection 

Fortunately, various types of waves, including mechanical, electrical, acoustical, and optical 

waves, behave fundamentally alike. This helps us to use our intuition from more tangible 

types, such as a water wave, to better understand the behavior of the other types. One 

similarity of waves of all kinds is that they reflect when certain properties of the medium they 
are traveling through change. 

For example, when a water wave traveling toward the shore collides with a rock, it reflects 

off it and propagates back into the ocean. Similarly, a voltage wave reflects when the 

impedance of the wave medium changes. 

In the example depicted in Figure 1(a), the wave traveling in the positive x direction reflects 

when the load impedance RL is not matched to a special property of the interconnect called 

characteristic impedance (often denoted by Z0). Upon reflection, a wave in the negative x 

direction is created that travels from the load toward the voltage source. Therefore, in 

general, we can expect the incident and reflected waves to travel simultaneously along the 

wire. The ratio of the reflected voltage to the incident voltage is defined as the reflection 

coefficient and is denoted by Γ Γ. 

  

https://www.allaboutcircuits.com/textbook/radio-frequency-analysis-design/real-life-rf-signals/understanding-reflections-and-standing-waves-rf-circuit-design/
https://www.allaboutcircuits.com/textbook/radio-frequency-analysis-design/real-life-rf-signals/understanding-reflections-and-standing-waves-rf-circuit-design/
https://www.allaboutcircuits.com/textbook/radio-frequency-analysis-design/real-life-rf-signals/the-50-question-impedance-matching-in-rf-design/
https://www.allaboutcircuits.com/textbook/radio-frequency-analysis-design/real-life-rf-signals/the-50-question-impedance-matching-in-rf-design/
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Impedance Matching: RF Engineer’s Obsession 

Since some of the incident power is reflected back to the source, the load cannot receive the 

maximum power that the source provides. Therefore, the reflection coefficient is an important 

parameter that determines how much of the available power is actually going to reach the 

load. To achieve maximum power transfer, the load impedance should match the 
characteristic impedance of the line. 

Another issue with load mismatch is that the superposition of the incident and reflected 

waves can create large peak voltages along the wire that can damage our circuit components 

or interconnects. The above discussion shows that when dealing with high-frequency signals, 

we need interconnects with precisely controlled parameters to predict the wave behavior as it 

travels along the interconnect. For example, the dimensions of the conductors, the distance 

between them, and the type of dielectric that separates the conductors should be precisely 

controlled. These specialized interconnects are called transmission lines to distinguish them 

from ordinary interconnects.  

  

RF Wave Dimensions 

As a rule of thumb, if the physical length of a wire is about λ15 λ15, the electrical signal 

should be considered as a wave traveling through the wire. 

Figure 3 helps you visualize how restricting the wire length to λ15 λ15 reduces the signal 

variations with the position. 
  

 

https://www.allaboutcircuits.com/textbook/radio-frequency-analysis-design/real-life-rf-signals/what-is-a-transmission-line/
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Figure 3. An example showing how, by restricting wire size (a), the signal varies with the 

position (b).  

  

Some references suggest a physical size of λ10 λ10 as the threshold at which the signal 

variation with position is expected to be significant. 

Now that we have a qualitative understanding of electrical waves and transmission lines let’s 

take a look at the equivalent circuit of a transmission line and see how we can eliminate 
reflections. 

. 

  

 


