
 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 UNIT-III EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

Definition
STACK

Stack is a linear list in which elements are added and removed from only one end, called

the top. It is a "last in, first out" (LIFO) data structure. At the logical level, a stack is an ordered

group of homogeneous items or elements. Because items are added and removed only from the

top of the stack, the last element to be added is the first to be removed. Stacks are also referred

as "piles" and "push-down lists".

 Operations on stacks

 Push - Inserts new item to the top of the stack. After the push, the new item becomes the

top.

 Pop - Deletes top item from the stack. The next older item in the stack becomes the top.

 Top - Returns a copy of the top item on the stack, but does not delete it.
 MakeEmpty - Sets stack to an empty state.
 Boolean IsEmpty - Determines whether the stack is empty. IsEmpty should compare top

with -1.
 Boolean IsFull - Determines whether the stack is full. IsFull should compare top with

MAX_ITEMS - 1.

 Conditions

 Stack overflow - The condition resulting from trying to push an element onto a full stack.

 Stack underflow - The condition resulting from trying to pop an element from an empty

stack.

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 UNIT-III EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

New item pushed on Stack

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 UNIT-III EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

Two items popped from Stack

APPLICATIONS OF STACKS

 Recursion - Example, Factorial, Tower of Hanoi.
 Balancing Symbols, i.e., finding the unmatched/missing parenthesis. For example,

((A+B)/C and (A+B)/C). Compilers often use stacks to perform syntax analysis of

language statements.

 Conversion of infix expression to postfix expression and decimal number to binary number.

 Evaluation of postfix expression.

 Backtracking- For example, 8-Queens problem.

 Function calls - When a call is made to a new function, all the variables local to the calling

routine need to be saved by the system, since otherwise the new function will overwrite the

calling routine's variables. Similarly the current location in the routine must be saved so that

the new function knows where to go after it is done. For example, the main program calls

operation A, which in turn calls operation B, which in turn calls operation C. When C finishes,

control returns to B; when B finishes, control returns to A; and so on. The call-and-return

sequence is essentially a LIFO sequence, so a stack is the perfect structure for tracking it.

 Implementations of stack

1. Array implementation of stack

2. Linked list implementation of stack

 Array implementation of stack

Stack can be represented using one dimensional array and it is probably the more popular

solution.Here the stack is of fixed size. That is maximum limit for storing elements is specified.

Once the maximum limit is reached, it is not possible to store the elements into it. So array

implementation is not flexible and not an efficient method when resource optimization is

concerned.

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 UNIT-III EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 UNIT-III EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

PUSH AND POP OPERATION

#include<stdio.h>

#include<conio.h

> #define MAX 5

void push();

void pop();

void display();

int stack[MAX], top=-1, item;

void push()

{
if(top == MAX-1)

printf("Stack is full");
else

{

printf("Enter item:

");

scanf("%d",&item);

top++;

stack[top] = item;

printf("Item pushed = %d", item);
}

}

void pop()

{

if(top == -1)

printf("Stack is

empty"); else

{

item = stack[top];

top--;
printf("Item popped = %d", item);

}

}

void display()

{

int i;

if(top == -1)

printf("Stack is empty");
else
{

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 UNIT-III EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

ARRAY IMPLEMENTATION STACK

for(i=top; i>=0; i--)

printf("\n %d", stack[i]);

}
}

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 UNIT-III EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

Push Operation

The process of putting a new data element onto stack is known as a Push Operation.

Push operation involves a series of steps −

 Step 1 − Checks if the stack is full.

 Step 2 − If the stack is full, produces an error and exit.

 Step 3 − If the stack is not full, increments top to point next empty space.

 Step 4 − Adds data element to the stack location, where top is pointing.

 Step 5 − Returns success.

If the linked list is used to implement the stack, then in step 3, we need to allocate

space dynamically.

Algorithm for PUSH Operation

A simple algorithm for Push operation can be derived as follows −

begin procedure push: stack, data

 if stack is full

 return null

 endif

 top ← top + 1

 stack[top] ← data

end procedure

Implementation of this algorithm in C, is very easy. See the following code −

Example

void push(int data) {

 if(!isFull()) {

 top = top + 1;

 stack[top] = data;

 } else {

 printf("Could not insert data, Stack is full.\n");

 }

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 UNIT-III EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

}

Pop Operation

Accessing the content while removing it from the stack, is known as a Pop

Operation. In an array implementation of pop() operation, the data element is not

actually removed, instead top is decremented to a lower position in the stack to

point to the next value. But in linked-list implementation, pop() actually removes

data element and deallocates memory space.

A Pop operation may involve the following steps −

 Step 1 − Checks if the stack is empty.

 Step 2 − If the stack is empty, produces an error and exit.

 Step 3 − If the stack is not empty, accesses the data element at which top is

pointing.

 Step 4 − Decreases the value of top by 1.

 Step 5 − Returns success.

Algorithm for Pop Operation

A simple algorithm for Pop operation can be derived as follows −

begin procedure pop: stack

 if stack is empty

 return null

 endif

 data ← stack[top]

 top ← top - 1

 return data

end procedure

Implementation of this algorithm in C, is as follows −

Example

int pop(int data) {

 if(!isempty()) {

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 UNIT-III EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

 data = stack[top];

 top = top - 1;

 return data;

 } else {

 printf("Could not retrieve data, Stack is empty.\n");

 }

}

The way to write arithmetic expression is known as a notation. An arithmetic

expression can be written in three different but equivalent notations, i.e., without

changing the essence or output of an expression. These notations are −

 Infix Notation

 Prefix (Polish) Notation

 Postfix (Reverse-Polish) Notation

These notations are named as how they use operator in expression. We shall learn

the same here in this chapter.

Infix Notation

We write expression in infix notation, e.g. a - b + c, where operators are used in-

between operands. It is easy for us humans to read, write, and speak in infix notation

but the same does not go well with computing devices. An algorithm to process

infix notation could be difficult and costly in terms of time and space consumption.

Prefix Notation

In this notation, operator is prefixed to operands, i.e. operator is written ahead of

operands. For example, +ab. This is equivalent to its infix notation a + b. Prefix

notation is also known as Polish Notation.

Postfix Notation

This notation style is known as Reversed Polish Notation. In this notation style,

the operator is postfixed to the operands i.e., the operator is written after the

operands. For example, ab+. This is equivalent to its infix notation a + b.

The following table briefly tries to show the difference in all three notations −

Sr.No. Infix Notation Prefix Notation Postfix Notation

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 UNIT-III EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

1 a + b + a b a b +

2 (a + b) ∗ c ∗ + a b c a b + c ∗

3 a ∗ (b + c) ∗ a + b c a b c + ∗

4 a / b + c / d + / a b / c d a b / c d / +

5 (a + b) ∗ (c + d) ∗ + a b + c d a b + c d + ∗

6 ((a + b) ∗ c) - d - ∗ + a b c d a b + c ∗ d -

Parsing Expressions

As we have discussed, it is not a very efficient way to design an algorithm or

program to parse infix notations. Instead, these infix notations are first converted

into either postfix or prefix notations and then computed.

To parse any arithmetic expression, we need to take care of operator precedence

and associativity also.

Precedence

When an operand is in between two different operators, which operator will take

the operand first, is decided by the precedence of an operator over others. For

example −

As multiplication operation has precedence over addition, b * c will be evaluated

first. A table of operator precedence is provided later.

Associativity

Associativity describes the rule where operators with the same precedence appear

in an expression. For example, in expression a + b − c, both + and – have the same

precedence, then which part of the expression will be evaluated first, is determined

by associativity of those operators. Here, both + and − are left associative, so the

expression will be evaluated as (a + b) − c.

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 UNIT-III EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

Precedence and associativity determines the order of evaluation of an expression.

Following is an operator precedence and associativity table (highest to lowest) −

Sr.No. Operator Precedence Associativity

1 Exponentiation ^ Highest Right Associative

2 Multiplication (∗) & Division (/) Second Highest Left Associative

3 Addition (+) & Subtraction (−) Lowest Left Associative

The above table shows the default behavior of operators. At any point of time in

expression evaluation, the order can be altered by using parenthesis. For example −

In a + b*c, the expression part b*c will be evaluated first, with multiplication as

precedence over addition. We here use parenthesis for a + b to be evaluated first,

like (a + b)*c.

Postfix Evaluation Algorithm

We shall now look at the algorithm on how to evaluate postfix notation −

Step 1 − scan the expression from left to right

Step 2 − if it is an operand push it to stack

Step 3 − if it is an operator pull operand from stack and perform operation

Step 4 − store the output of step 3, back to stack

Step 5 − scan the expression until all operands are consumed

Step 6 − pop the stack and perform operation

	Definition
	 Operations on stacks
	 Conditions
	APPLICATIONS OF STACKS
	 Implementations of stack
	 Array implementation of stack
	Push Operation
	Algorithm for PUSH Operation

	Pop Operation
	Algorithm for Pop Operation

	Infix Notation
	Prefix Notation
	Postfix Notation
	Parsing Expressions
	Precedence
	Associativity

	Postfix Evaluation Algorithm

