Eliminating ε Transitions

NFA with ϵ can be converted to NFA without ϵ , and this NFA without ϵ can be converted to DFA. To do this, we will use a method, which can remove all the ϵ transition from given NFA. The method will be:

- 1. Find out all the ϵ transitions from each state from Q. That will be called as ϵ -closure{q1} where qi \in Q.
- 2. Then δ' transitions can be obtained. The δ' transitions mean a ϵ -closure on δ moves.
- 3. Repeat Step-2 for each input symbol and each state of given NFA.
- 4. Using the resultant states, the transition table for equivalent NFA without ε can be built.

Example:

Convert the following NFA with ϵ to NFA without ϵ .

E OPTIMIZE OUTSPREAD

Solutions: We will first obtain ε -closures of q0, q1 and q2 as follows:

- 1. ε -closure(q0) = {q0}
- 2. ϵ -closure(q1) = {q1, q2}
- 3. ε -closure(q2) = {q2}

Now the δ' transition on each input symbol is obtained as:

- 1. $\delta'(q0, a) = \epsilon$ -closure($\delta(\delta^{(q0, \epsilon), a)}$)
- 2. = ε-closure(δ (ε-closure(q0),a))
- 3. = ε -closure($\delta(q0, a)$)
- 4. = ϵ -closure(q1)
- 5. $= \{q1, q2\}$

6.

7. $\delta'(q0, b) = \epsilon$ -closure($\delta(\delta^{(q0, \epsilon), b)}$)

8. = ε -closure($\delta(\varepsilon$ -closure(q0),b))

NEERING A

9. = ε -closure($\delta(q0, b)$)

10. = Ф

Now the δ' transition on q1 is obtained as:

δ'(q1, a) = ε-closure($δ(δ^{q1}, ε), a)$)

2. = ε-closure(
$$\delta$$
(ε-closure(q1),a))

3. = ε -closure($\delta(q1, q2)$, a)

4. = ε-closure(
$$\delta(q1, a) \cup \delta(q2, a)$$
)

= ε-closure($\Phi \cup \Phi$) 5.

6. **=** Φ

7.

 $\delta'(q1, b) = \epsilon$ -closure($\delta(\delta^{(q1, \epsilon), b)}$) 8.

9. =
$$\varepsilon$$
-closure($\delta(\varepsilon$ -closure(q1),b))

= ε -closure($\delta(q1, q2)$, b) 10.

11. =
$$\varepsilon$$
-closure($\delta(q1, b) \cup \delta(q2, b)$)

= ε-closure(Φ U q2) 12.

 $= \{q2\}$ 13.

The δ' transition on q2 is obtained as:

δ'(q2, a) = ε-closure($δ(δ^{(q2, ε), a)}$)

2. =
$$\varepsilon$$
-closure($\delta(\varepsilon$ -closure(q2),a))
3. = ε -closure($\delta(q2, a)$)
4 = ε -closure(Φ)

3. = ε -closure($\delta(q2, a)$)

5. = Ф

6.

δ'(q2, b) = ε-closure($δ(δ^{\circ}(q2, ε), b)$) VE OPTIMIZE OUTSPREAD 7.

8. = ε -closure($\delta(\varepsilon$ -closure(q2),b))

= ε -closure($\delta(q2, b)$) 9.

 $= \varepsilon$ -closure(q2) 10.

11. $= \{q2\}$

Now we will summarize all the computed δ' transitions:

1. $\delta'(q0, a) = \{q0, q1\}$

- 2. $\delta'(q0, b) = \Phi$
- 3. $\delta'(q1, a) = \Phi$
- 4. $\delta'(q1, b) = \{q2\}$
- 5. $\delta'(q2, a) = \Phi$
- 6. $\delta'(q2, b) = \{q2\}$

The transition table can be:

States	A		В	
→ q0	{q1, q2}		Ф	
*q1	Ф		{q2}	
*q2	Ф		{q2}	
		(c) Av III	// [-	

SMOINEERI

State q1 and q2 become the final state as ϵ -closure of q1 and q2 contain the final state q2. The NFA can be shown by the following transition diagram:

