
CS8691 Artificial Intelligence

Rohini college of engineering and technology

3.1 PROLOG PROGRAMMING

Prolog (which stands for ―Programming in Logic‖) is one of the most interesting languages

in use today. Prolog is a declarative language that focuses on logic. Programming in Prolog involves

specifying rules and facts and allowing Prolog to derive a solution. Prolog was created around 1972

by Alain Colmerauer and Robert Kowalski as a competitor to the LISP language.

 The earliest Prolog applications were in the domain of natural-language programming, as

this was the object of research by its creators. Natural language programming (NLP) is

supported by a unique feature of Prolog.

 Prolog includes a built-in mechanism for parsing context-free grammars, making it ideal

for NLP or parsing grammars.

 In fact, like LISP, a Prolog interpreter can be easily implemented in Prolog.

 Today, Prolog remains a language used primarily by researchers, but the language has

advanced to support multiple programming paradigms.

 Prolog is ideal for developing knowledge-based systems such as expert systems and also

systems for research into computer algebra.

CS8691 Artificial Intelligence

Rohini college of engineering and technology

 Prolog‘s problem solving capabilities maintain it as an important language for problems

in the knowledge domain.

3.2.1 Overview of the Prolog Language

Prolog comprised of two fundamental elements, the database and the interpreter.

1. The database contains the facts and rules that are used to describe the problem.

2. The interpreter provides the control in the form of a deduction method.

Prolog doesn‘t include data types, but instead what can be referred to as lexical elements.

Some of the important lexical elements of Prolog include atoms, numbers, variables, and lists.

An atom is a string made up of characters (lower and upper case), digits, and the underscore.

Numbers are simply sequences of digits with an optional preceding minus sign. Variables have the

same format as atoms, except that the first character is always capitalized. A list is represented as a

comma delimited set of elements, surrounded by brackets. For example

person Atom, f_451 Atom, ‗A complex atom.‘ Atom,

86 Number, -451 Number, Person Variable,

A_variable Variable, [a, simple, list] List, [a, [list of lists]] List.

Constructing a list is performed simply as follows:

| ?- [a, b, c, d] = X

X = [a,b,c,d] Yes | ?-

The X variable refers to the list [a, b, c, d], which is identified by the Prolog interpreter. We can

also concatenate two lists using the append predicate.

| ?- append([[a, b], [c, d]], [[e, f]], Y).

Y = [[a,b],[c,d],[e,f]]

yes | ?-

List has length and member functions and [Head | Tail] variables.

What separates Prolog from all other languages is its built-in ability of deduction.

Define fruit(pear). Query the Prolog database, such as:

| ?- fruit(pear).

Yes | ?-

for which Prolog would reply with ‗yes‘ (a pear is a fruit). Create a rule oddity to define that the tomato

is both a fruit and a vegetable.

oddity(X) :-

fruit(X), vegetable(X).

Similarly, family tree is constructed with the following rules. To be a husband, a person of the male

gender is married to a person of the female gender and a wife is a female person that is also married

to a male person.

CS8691 Artificial Intelligence

Rohini college of engineering and technology

husband(Man, Woman) : male(Man), married(Man, Woman).

wife(Woman, Man) :

female(Woman), married(Man, Woman).

We create son/daughter rule, which defines that a son/daughter is a male/female child of a parent.

son(Child, Parent) :

male(Child), child(Child, Parent). daughter(Child, Parent) :

female(Child), child(Child, Parent).

3.2.2 Querying the family tree database with gprolog.

| ?- consult(‗family.pl‘).

compiling /home/mtj/family.pl for byte code...

/home/mtj/family.pl

compiled, 71 lines read - 5920 bytes written, 51 ms (10 ms) yes

| ?- grandchild(marc, X). X

= bud

X = ernie X

= celeta X =

lila No

| ?-

| ?- trace.

The debugger will first show everything (trace)

yes

{trace}

| ?- grandparent(bud, marc).

1 1 Call: grandparent(bud,marc)

2 2 Call: parent(bud,_79)

3 3 Call: father(bud,_103)

3 3 Exit: father(bud,tim)

2 2 Exit: parent(bud,tim)

3 2 Call: parent(tim,marc)

4 3 Call: father(tim,marc)

5 3 Exit: father(tim,marc)

4 2 Exit: parent(tim,marc)

1 1 Exit: grandparent(bud,marc)

true ?

yes

{trace} | ?-

CS8691 Artificial Intelligence

Rohini college of engineering and technology

Let‘s now have a look at this database in action. This is illustrated below using the GNU prolog

interpreter (gprolog). Trace allows us to trace the flow of the application of rules for a given query.

For example, the following query checks to see if a person is a grandparent of another person. Note

here that the variables preceded by underscores are temporary variables created by Prolog during its

rule checking.

3.2.3 Arithmetic Expressions

Finally, let‘s look at an example that combines arithmetic expressions with logic programming. In

this example, we‘ll maintain facts about the prices of products, and then a rule that can compute the

total cost of a product given a quantity (again, encoded as a fact). First, let‘s define our initial set of

facts that maintain the price list of the available products.

cost(banana, 0.35). cost(apple, 0.25). cost(orange, 0.45). cost(mango, 1.50).

We can also provide a quantity that we plan to purchase, using another relation for the fruit, for

example: qty(mango, 4).

We can then add a rule that calculates the total cost of an item purchase:

total_cost(X,Y) :

cost(X, Cost), qty(X, Quantity),

Y is Cost * Quantity.

What this rule says is that if we have a product with a cost fact, and a quantity fact, then we can

create a relation to the product cost and quantity values for the item. We can invoke this from the

Prolog interpreter as:

| ?- total_cost(mango, TC).

TC = 6.0

yes | ?- This tells us that the total cost for four mangos is

$6.00.

3.2 UNIFICATION

We have noticed that the propositional logic approach is rather inefficient. For example, given the

query Evil(x) and the knowledge base, it seems perverse to generate sentences such as

King(Richard) 𝖠 Greedy(Richard) ⇒ Evil(Richard).

∀ x King(x) 𝖠 Greedy(x) ⇒ Evil(x) King(John) Greedy(John)

Indeed, the inference of Evil(John) from the sentences seems completely obvious. We now show

how to make it completely obvious to a computer.

CS8691 Artificial Intelligence

Rohini college of engineering and technology

3.3.1 A first-order inference rule

The inference that John is evil, that is, that {x/John} solves the query Evil(x) works like this: to use

the rule that greedy kings are evil, find some x such that x is a king and x is greedy, and then infer

that this x is evil. More generally, if there is some substitution θ that makes each of the conjuncts

of the premise of the implication identical to sentences already in the knowledge base, then we can

assert the conclusion of the implication, after applying θ. In this case, the substitution θ ={x/John}

achieves that aim. Suppose that instead of knowing Greedy(John), we know that everyone is greedy:

∀ y Greedy(y) .

Then we would still be able to conclude that Evil(John), substitute {x/John, y/John} to the implication

premises King(x) and Greedy(x) and the knowledge-base sentences King(John) and Greedy(y) will

make them identical. Thus, we can infer the conclusion of the implication. This inference process

can be captured as Generalized Modus Ponens. For atomic sentences pi, pi‘, and q, where there is a

substitution θ such that SUBST(θ, pi‘)= SUBST(θ, pi), for all i,

There are n+1 premises to this rule: the n atomic sentences pi‘ and the one implication. The

conclusion is the result of applying the substitution θ to the consequent q. For our example:

p1‗ is King(John) p1 is King(x)

p2‘ is Greedy(y) p2 is Greedy(x)

θ is {x/John, y/John} q is Evil(x)

SUBST(θ, q) is Evil(John) .

For any substitution θ, p |= SUBST(θ, p)

holds by Universal Instantiation. It holds in particular for a θ that satisfies the conditions of the

Generalized Modus Ponens rule. Thus, from p1, . . . , pn‗ we can infer

SUBST(θ, p1‘) ∧ . . . ∧ SUBST(θ, pn‘)

and from the implication p1 ∧ . . . ∧ pn ⇒ q we can infer

SUBST(θ, p1) ∧ . . . ∧ SUBST(θ, pn) ⇒ SUBST(θ, q) .

CS8691 Artificial Intelligence

Rohini college of engineering and technology

Now, θ in Generalized Modus Ponens is defined so that SUBST(θ, pi‘)= SUBST(θ, pi), for all i;

therefore the first of these two sentences matches the premise of the second exactly.

Hence, SUBST(θ, q) follows by Modus Ponens.

Generalized Modus Ponens is a lifted version of Modus Ponens since it raises Modus Ponens from

ground (variable-free) propositional logic to first-order logic.

3.3.2 Unification

Lifted inference rules require finding substitutions that make different logical expressions look

identical. This process is called unification and is a key component of all first-order inference

algorithms. The UNIFY algorithm takes two sentences and returns a unifier for them if one exists:

UNIFY(p, q)=θ where SUBST(θ, p)= SUBST(θ, q) .

Suppose we have a query Ask(Knows(John, x)): whom does John know? Answers to this query can

be found by finding all sentences in the knowledge base that unify with Knows(John, x). The results

of unification with four different sentences that might be in the knowledge base:

UNIFY(Knows(John, x), Knows(John, Jane)) = {x/Jane} UNIFY(Knows(John, x),

Knows(y, Bill)) = {x/Bill, y/John} UNIFY(Knows(John, x), Knows(y,Mother (y))) =

{y/John, x/Mother (John)} UNIFY(Knows(John, x), Knows(x, Elizabeth)) = fail .

The last unification fails because x cannot take on the values John and Elizabeth at the same time.

Now, remember that Knows(x, Elizabeth) means ―Everyone knows Elizabeth,‖ so we should

be able to infer that John knows Elizabeth. The problem arises only because the two sentences happen

to use the same variable name, x. The problem can be avoided by standardizing apart one of the

two sentences being unified, by renaming its variables to avoid name clashes. Let us rename x in

Knows(x, Elizabeth) to x17. Now the unification will work.

UNIFY(Knows(John, x), Knows(x17, Elizabeth)) = {x/Elizabeth, x17/John} .

There is one more complication: For example, UNIFY(Knows(John, x), Knows(y, z)) could return

{y/John, x/z} or {y/John, x/John, z/John}. The first unifier gives Knows(John, z) as the result of

unification, whereas the second gives Knows(John, John), {z/John}; we say that the first unifier is

more general than the second. For every unifiable pair of expressions, there is a single most general

unifier (MGU) that is unique up to renaming and substitution of variables.

CS8691 Artificial Intelligence

Rohini college of engineering and technology

Figure 9.1 The Unification algorithm.

Procedure for UNIFY (L1, L2)

1. if L1 or L2 are both variables or constant then

a. if L1 or L2 are identical then return NIL

b. Else if L1 is a variable then if L1 occurs in L2 then return Fail else return (L2/L1)

c. Else if L2 is a variable then if L2 occurs in L1 then return Fail else return (L1/L2)

d. Else return Fail.

2. If initial predicate of L1 and L2 are not equal then return Fail.

3. If length (L1) is not equal to length (L2) then return Fail.

4. Set SUBST to NIL (at the end, SUBST will contain all substitutions in L1 and L2).

5. For i = 1 to number of elements in L1 then

a. Call UNIFY with the ith element of L1 and L2, putting the result in S

b. If S = Fail then return Fail

c. If S is not equal to NIL then do

i. Apply S to the remainder of both L1 and L2

CS8691 Artificial Intelligence

Rohini college of engineering and technology

ii. SUBST := APPEND (S, SUBST) return SUBST.

CS8691 Artificial Intelligence

Rohini college of engineering and technology

The process in Figure 9.1 is simple: recursively explore the two expressions simultaneously ―side

by side,‖ building up a unifier along the way, but failing if two corresponding points in

the structures do not match. There is one expensive step: when matching a variable against a complex

term occur check, one must check whether the variable itself occurs inside the term; if it does, the

match fails because no consistent unifier can be constructed. For example, S(x) can‘t unify with

S(S(x)). Some systems, including all logic programming systems, simply omit the occur check and

sometimes make unsound inferences as a result; other systems use more complex algorithms with

linear-time complexity.

3.3.3 Storage and retrieval

Underlying the TELL and ASK functions used to inform and interrogate a knowledge base are the

more primitive STORE and FETCH functions. STORE(s) stores a sentence s into the knowledge

base and FETCH(q) returns all unifiers such that the query q unifies with some sentence in the

knowledge base. The simplest way to implement STORE and FETCH is to keep all the facts in one

long list and unify each query against every element of the list. Such a process is inefficient, but it

works, and it‘s all you need to understand.

We can make FETCH more efficient by ensuring that unifications are attempted only with sentences

that have some chance of unifying. For example, there is no point in trying to unify Knows(John, x)

with Brother (Richard, John). We can avoid such unifications by indexing the facts in the knowledge

base. A simple scheme called predicate indexing puts all the Knows facts in one bucket and all the

Brother facts in another.

Figure 9.2 (a) The subsumption lattice whose lowest node is Employs(IBM,Richard).

(b) The subsumption lattice for the sentence Employs (John, John).

CS8691 Artificial Intelligence

Rohini college of engineering and technology

Answering a query such as Employs(x,Richard) with predicate indexing would require

scanning the entire bucket. For this particular query, it would help if facts were indexed both

by predicate and by second argument, perhaps using a combined hash table key.

We could simply construct the key from the query and retrieve exactly those facts that unify

with the query. Therefore, facts can be stored under multiple index keys, rendering them

instantly accessible to various queries that they might unify with. These queries form a

subsumption lattice, as shown in Figure 9.2(a). The lattice has some interesting properties.

For example, the child of any node in the lattice is obtained from its parent by a single

substitution; and the ―highest‖ common descendant of any two nodes is the result of

applying their most general unifier

