## IRC SPECIFICATION AND LOADING - RC SOLID SLAB BRIDGE

### 2.4 Design Of Reinforced Concrete Solid Slab Bridge

## Example 4

Design and draw the RC solid slab bridge for a national highway with the consideration of following data

Design for two lane ( 7.5 m wide) and with 1 m foot paths on both side.

| Clear span | $=5 \mathrm{~m}$ |
| :--- | :--- |
| Wearing coat | $=70 \mathrm{~mm}$ |

Width of bearing $=0.4 \mathrm{~m}$
Use M25 grade concrete, Fe415 grade steel and loading IRC class AA tracked vehicle.

Given data

| Two lane | $=7.5 \mathrm{~m}$ |
| :--- | :--- |
| clear span | $=5 \mathrm{~m}$ |
| wearing coat | $=70 \mathrm{~mm}$ |
| width of bearing | $=0.4 \mathrm{~m}$ |

Solution:
Step 1: Determine of slab depth and effective span
Permissible stresses

$$
\begin{aligned}
\sigma_{\mathrm{cb}} & =8.3 \mathrm{~N} / \mathrm{mm}^{2} \\
\sigma_{\mathrm{st}} & =200 \mathrm{~N} / \mathrm{mm}^{2} \\
\mathrm{~m} & =10 \\
\mathrm{j} & =0.90 \\
\mathrm{Q} & =1.1
\end{aligned}
$$

Assume thickness of solid slab highway bridge at $80 \mathrm{~mm} /$ meter of span.

$$
\begin{aligned}
\text { overall slab thickness } & =80 \times 5 \\
& =400 \mathrm{~mm}
\end{aligned}
$$

Let thickness of slab as 400 mm . Assume using 25 mm ф rebar with clear cover of 25 mm .

$$
\begin{aligned}
\text { effective depth } & =400-(25 / 2)-25 \\
& =362.5 \mathrm{~mm} \\
\text { width of bearing } & =400 \mathrm{~mm}
\end{aligned}
$$

## Effective span

Clear span + effective depth $=5+0.3625$
$\begin{aligned} & =5.3625 \mathrm{~m} \\ \text { Center to center of bearing } & =5+0.4 \\ & =5.4 \mathrm{~m} \\ \text { Effective span } & =5.3625 \mathrm{~m}\end{aligned}$


Step 4: Dead load calculation

$$
\begin{aligned}
\text { self weight of slab } & =0.4 \times 25 \\
& =10 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

Load due to wearing coat $=0.07 \times 22$

$$
\begin{aligned}
& =1.54 \mathrm{kN} / \mathrm{m}^{2} \\
& =11.54 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

Bending moment due to D.L $=\left(11.54 \times 5.3625^{2}\right) / 8$

$$
=41.5 \mathrm{kNm}
$$

Step 5: Bending moment due to live load

$$
\begin{array}{ll}
\text { Impact factor } & =[25-15 / 4(5.3625-5)] \\
& =23.64 \%
\end{array}
$$

Assume vehicle is placed symmetrically on the span.
Effective length of load $=3.6+2(0.4+0.07)$

$$
=4.56 \mathrm{~m}
$$

Effective width of slab


$$
\mathrm{b}_{\mathrm{e}} \quad=\mathrm{k}_{\mathrm{x}}(1-\mathrm{x} / \mathrm{L})+\mathrm{b}_{\mathrm{w}}
$$

Where

$$
\begin{array}{ll}
\mathrm{x} & =2.68125 \mathrm{~m} \\
\mathrm{~L} & =5.3625 \mathrm{~m} \\
B & =9.5 \mathrm{~m} \\
B / L & =1.77
\end{array}
$$

$$
\begin{aligned}
\mathrm{b}_{\mathrm{w}} & =(0.85+2 \times 0.07) \\
& =0.99 \mathrm{~m}
\end{aligned}
$$

$K$ value for $B / L \quad=1.77$ for Simply supported slab is equal to 2.948 $b_{e} \quad=2.984 \times 2.68125[1-(2.68125 / 5.3625)]+0.99$
$=3.913 \mathrm{~m}$


Net effective width of dispersion $=6.6315 \mathrm{~m}$

Total factored load 2 track with impact

$$
\begin{aligned}
& =1.5[1+23.64 / 100] \times 700 \\
& =1298.22 \mathrm{Kn}
\end{aligned}
$$

Average factored load intensity $=1298.22 /(4.56 \times 6.6315)$

$$
=42.93 \mathrm{kN} / \mathrm{m}^{2}
$$

Maximum bending moment for factored live load

$$
\begin{aligned}
\mathrm{M}_{\max } & =[(42.93 \times 4.56) / 2 \times 2.68125]-[(42.93 \times 4.56) / 2 \times 4.56 / 4] \\
\mathrm{M}_{\mathrm{L}} & =150.85 \mathrm{kNm} / \mathrm{m}
\end{aligned}
$$

Total bending moment (L.L + D.L)

$$
\begin{aligned}
& =M_{L}+M_{d} \\
& =150.85+41.5 \\
& =192.35 \mathrm{kNm}
\end{aligned}
$$

Step 6 : Shear force due to IRC class AA loading

The maximum shear while occurs while load subjects towards the support


Effective width of dispersion

$$
\mathrm{b}_{\mathrm{e}} \quad=\mathrm{k}_{\mathrm{x}}[1-\mathrm{x} / \mathrm{L}]+\mathrm{b}_{\mathrm{w}}
$$

Where,

$$
\begin{aligned}
\mathrm{x} & =2.28 \mathrm{~m} \\
\mathrm{~B} & =9.5 \mathrm{~m} \\
\mathrm{~b}_{\mathrm{w}} & =0.99 \mathrm{~m} \\
\mathrm{~L} & =5.3625 \mathrm{~m} \\
\mathrm{~B} / \mathrm{L} & =1.77 \\
\mathrm{~K} & =2.948 \\
\mathrm{~b}_{\mathrm{e}} & =2.948 \times 2.28[1-(2.28 / 5.3625)]+0.99 \\
& =3.825 \mathrm{~m} \\
\text { Width of dispersion } & =2625+2050+3825 / 2 \\
& =6587.5 \mathrm{~mm}
\end{aligned}
$$

## Average factored load intensity

$\mathrm{w} \quad=[1298.22 /(4.56 \times 6.5875)]$

$$
=43.21 \mathrm{kN} / \mathrm{m}^{2}
$$

$$
\begin{aligned}
\text { factored shear force } \mathrm{V}_{\mathrm{A}} & =[43.21 \times 4.56 \times(5.3625-2.28)] / 5.3625 \\
& =113.25 \mathrm{kN} / \mathrm{m} \\
\text { shear due to dead load } & =11.54 \times 5.3625 / 2 \\
& =30.94 \\
\text { Total shear force } & =113.26+30.94 \\
& =144.2 \mathrm{KN} / \mathrm{m}
\end{aligned}
$$

Step 7: Design of check slab

$$
\text { required depth, } \begin{aligned}
d & =\sqrt{\frac{M}{Q b}} \\
& =\left[\left(150.85 \times 10^{\wedge} 6\right) /(1.1 \times 1000)\right]^{0.5} \\
& =370.319 \mathrm{~mm}
\end{aligned}
$$

Depth provided 400 mm . Hence it is ok.

$$
\begin{aligned}
\mathrm{A}_{\mathrm{st}} & =\left(150.85 \times 10^{\wedge} 6\right) /(200 \times 0.9 \times 362.5) \\
& =2311.8 \mathrm{~mm} 2
\end{aligned}
$$

Assume 25mmф bars,

$$
\begin{aligned}
\text { spacing } & =\frac{\pi 25^{\wedge} 2}{4} \times \frac{1000}{2311.8} \\
& =212.33 \mathrm{~mm}
\end{aligned}
$$

Let provide 25 mm ф@ 200 mm c/c spacing as main reinforcement and 10 mm ф $@ 300 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ at top on both side.

Bending moment for distribution reinforcement

$$
\begin{aligned}
& =0.3 \mathrm{M}_{\mathrm{L}}+0.2 \mathrm{M}_{\mathrm{d}} \\
& =0.2(150.85)+0.2(41.5)
\end{aligned}
$$

$$
=53.55 \mathrm{kNm}
$$

Let use $16 \mathrm{~mm} \phi$ bars,

$$
\begin{aligned}
\text { effective depth } & =[362.5-(12.5+16 / 2)] \\
& =342 \mathrm{~mm} \\
\mathrm{~A}_{\mathrm{st}} & =\left(53.55 \times 10^{\wedge} 6\right) /(200 \times 0.9 \times 342) \\
& =870 \mathrm{~mm}^{2}
\end{aligned}
$$

$16 \mathrm{~mm} \phi$ bar spacing $=16^{2} \times \pi / 4 \times 1000 / 870$

$$
=231.1
$$

Provide 16 mm ф@ $220 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ as distribution reinforcement.
Step 8: shear check
Maximum factored stress force,

$$
\mathrm{V}_{\mathrm{u}} \quad=144.2 \mathrm{kN} / \mathrm{m}
$$

Nominal shear stress,

$$
\begin{aligned}
\tau_{\mathrm{v}} & =\mathrm{V}_{\mathrm{u}} / \mathrm{bd} \\
& =144.2 \times 10^{\wedge} 3 / 1000 \times 362.5 \\
& =0.397 \mathrm{~N} / \mathrm{mm}^{2} \\
\tau_{\mathrm{c}} & =0.4 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Hence safe.

Step 9 : check for development length @ support

$$
\begin{aligned}
\text { M1 } & =1 / 2 \times M_{u} \\
& =1 / 2 \times 150.85 \\
& =75.425
\end{aligned}
$$

Development length for 25 中 rebars

$$
\mathrm{L}_{\mathrm{d}}=56 \Phi
$$

Anchorage length of $90 \dot{\circ}$ bend

$$
\begin{aligned}
\mathrm{L}_{0} & =8 \phi \\
& =8 \times 25 \\
& =200 \mathrm{~mm}
\end{aligned}
$$

$\mathrm{L}_{\mathrm{d}} \leq 1.3 \mathrm{M}_{1} / \mathrm{V}_{\mathrm{u}}+\mathrm{L}_{\mathrm{o}}$
$56 \Phi \leq\left(1.3 \times 75.425 \times 10^{\wedge} 6 / 144.2 \times 10^{\wedge} 3\right)+200$
$\phi \leq 880 / 56 \mathrm{~mm}$
$\phi \leq 15.7$
we provide 25 mm . Hence ok.
$0.08 \mathrm{~L}=0.08(5362.5)$

$$
=429 \mathrm{~mm}
$$

Provide 25 ф of $50 \%$ of curtailment @ 429 mm for support.
Step 10: Design of footpath

$$
\begin{aligned}
\text { width of footpath } & =1 \mathrm{~m} \\
\text { depth of footpath } & =0.6 \mathrm{~m} \\
\text { dead load } & =0.6 \times 1 \times 24 \\
& =14.4 \mathrm{kN} / \mathrm{m}
\end{aligned}
$$

assumed parapet load (railing) $=5 \mathrm{kN} / \mathrm{m}$

$$
\begin{aligned}
\text { live load } & =3 \times 1 \\
& =3 \mathrm{kN} / \mathrm{m}
\end{aligned}
$$

$$
\text { total load } \quad=22.4 \mathrm{kN} / \mathrm{m}
$$

Maximum factored bending moment

$$
\begin{aligned}
&=\left(1.5 \times 22.5 \times 2.3625^{\wedge} 2\right) / 8 \\
&=120.77 \mathrm{kNm} \\
& \text { BM due to vehicle loading }=0.6 \times 150.85 \\
&=90.51 \mathrm{kNm} \\
&=120.77+90.51 \\
&=211.3 \mathrm{kNm} \\
& \text { Total BM, } \mathrm{M}_{\mathrm{u}}=600-[25+25 / 2] \\
&=562.5 \mathrm{~mm} \\
& \text { Effective depth } \\
&=211.3 \times 10^{\wedge} 6 / 200 \times 0.9 \times 562.5 \\
&=2087 \mathrm{~mm}^{\wedge} 2
\end{aligned}
$$

Provide 4nos of $25 \mathrm{~mm} \phi$ bars @ bottom and 4nos of $12 \mathrm{~mm} \phi$ bars @ top with $10 \mathrm{~mm} \phi$ stirrups @ 300mm c/c spacing.

Reinforcement details


Fig. 2.1 Cross section


300 mm bed block

Fig. 2.2 Cross section

