IRC SPECIFICATION AND LOADING - RC SOLID SLAB BRIDGE

2.4 Design Of Reinforced Concrete Solid Slab Bridge

Example 4

Design and draw the RC solid slab bridge for a national highway with the consideration of following data

Design for two lane (7.5m wide) and with 1m foot paths on both side.

Clear span = 5m

Wearing coat = 70mm

Width of bearing = 0.4m

Use M25 grade concrete, Fe415 grade steel and loading IRC class AA tracked vehicle.

Given data

Two lane = 7.5 m

clear span = 5m

wearing coat = 70mm

width of bearing = 0.4m

Solution:

Step 1: Determine of slab depth and effective span

Permissible stresses

(from IRC:21 – 1987 cl 303.1)

 $\sigma_{cb} = 8.3 \text{ N/mm}^2$

 $\sigma_{st} = 200 \text{ N/mm}^2$

m = 10

i = 0.90

O = 1.1

Assume thickness of solid slab highway bridge at 80mm/meter of span.

overall slab thickness
$$= 80 \text{ x } 5$$

 $= 400 \text{mm}$

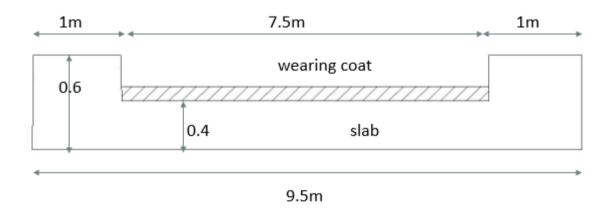
Let thickness of slab as 400mm. Assume using 25mm φ rebar with clear cover of 25mm.

effective depth
$$= 400 - (25/2) - 25$$

= 362.5mm

width of bearing = 400 mm

Effective span


Clear span + effective depth
$$= 5 + 0.3625$$

$$= 5.3625$$
m

Center to center of bearing
$$= 5 + 0.4$$

$$= 5.4 \text{m}$$

Effective span
$$= 5.3625 \text{ m}$$

Step 4: Dead load calculation

self weight of slab
$$= 0.4x25$$

 $= 10kN/m^2$

Load due to wearing coat = 0.07x22

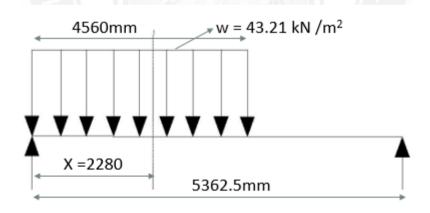
$$= 1.54 \text{ kN/m}^2$$

= 11.54 kN/m²

Bending moment due to D.L =
$$(11.54 \text{ X } 5.3625^2)/8$$

= 41.5kNm

Step 5: Bending moment due to live load


Impact factor =
$$[25 - 15/4(5.3625 - 5)]$$

= 23.64%

Assume vehicle is placed symmetrically on the span.

Effective length of load
$$= 3.6 + 2(0.4 + 0.07)$$
$$= 4.56m$$

Effective width of slab

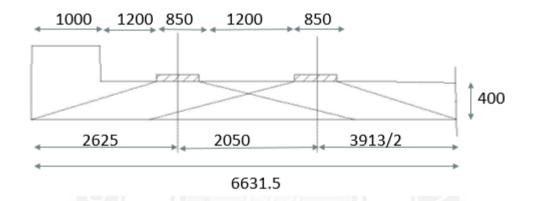
(from IRC 21 – 1987 cl.305.13)

$$b_e = k_x (1 - x/L) + b_w$$

Where

$$x = 2.68125m,$$

$$L = 5.3625 m,$$


$$B = 9.5m,$$

$$B/L = 1.77$$

$$b_w = (0.85 + 2 \times 0.07)$$
$$= 0.99m$$

K value for B/L = 1.77 for Simply supported slab is equal to 2.948

$$b_e = 2.984x2.68125[1-(2.68125/5.3625)] + 0.99$$

$$= 3.913m$$

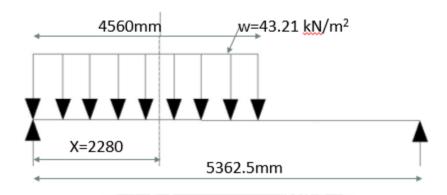
Net effective width of dispersion = 6.6315m

Total factored load 2 track with impact

Average factored load intensity = 1298.22/(4.56x6.6315)

$$= 42.93 kN/m^2$$

Maximum bending moment for factored live load


$$\begin{aligned} M_{max} &= [(42.93x4.56)/2 \ x \ 2.68125] - [(42.93x4.56)/2 \ x \ 4.56/4] \\ M_{L} &= 150.85 \ kNm/m \end{aligned}$$

Total bending moment (L.L + D.L)

$$= M_L + M_d$$

= 150.85 + 41.5
= 192.35kNm

Step 6: Shear force due to IRC class AA loading

The maximum shear while occurs while load subjects towards the support

Effective width of dispersion

Where,

$$b_e = k_x [1 - x/L] + b_w$$

$$x = 2.28 m$$

$$B = 9.5 m$$

$$b_{\rm w} = 0.99 {\rm m}$$

$$L = 5.3625 m$$

$$B/L = 1.77$$

$$K = 2.948$$

$$b_e = 2.948x2.28[1-(2.28/5.3625)]+0.99$$

$$= 3.825 m$$

Width of dispersion
$$= 2625 + 2050 + 3825/2$$

 $= 6587.5$ mm

Average factored load intensity

$$w = [1298.22/(4.56x6.5875)]$$

$$= 43.21 \text{ kN/m}^2$$

factored shear force
$$V_A = [43.21x4.56x(5.3625 - 2.28)]/5.3625$$

$$= 113.25 kN/m$$

shear due to dead load
$$= 11.54x5.3625/2$$

$$= 30.94$$

Total shear force
$$= 113.26 + 30.94$$

$$= 144.2 \text{ KN/m}$$

Step 7: Design of check slab

required depth, d =
$$\sqrt{\frac{M}{Qb}}$$

= $[(150.85 \times 10^{6})/(1.1 \times 1000)]^{0.5}$
= 370.319 mm

Depth provided 400mm. Hence it is ok.

$$A_{st}$$
 = $(150.85x10^{6})/(200x0.9x362.5)$
= $2311.8mm2$

Assume 25mm bars,

spacing =
$$\frac{\pi 25^2}{4} \times \frac{1000}{2311.8}$$

= 212.33mm

Let provide 25mm φ @ 200mm c/c spacing as main reinforcement and 10mm φ @ 300mm c/c at top on both side.

Bending moment for distribution reinforcement

$$= 0.3 M_L + 0.2 M_d$$
$$= 0.2(150.85) + 0.2(41.5)$$

$$= 53.55$$
kNm

Let use 16mm φ bars,

effective depth =
$$[362.5-(12.5+16/2)]$$

= 342 mm
 A_{st} = $(53.55x10^6)/(200x0.9x342)$
= 870 mm²
 16 mm ϕ bar spacing = 16^2 x $\pi/4$ x $1000/870$
= 231.1

Provide 16mm ϕ @ 220mm c/c as distribution reinforcement.

Step 8: shear check

Maximum factored stress force,

$$V_{\rm n} = 144.2 \text{ kN/m}$$

Nominal shear stress,

$$\tau_v = V_u/bd$$

$$= 144.2x10^3/1000x362.5$$

$$= 0.397 \text{ N/mm}^2$$

$$\tau_c = 0.4 \text{ N/mm}^2$$

Hence safe.

Step 9: check for development length @ support

M1 =
$$\frac{1}{2}$$
 X M_u
= $\frac{1}{2}$ x 150.85
= 75.425

Development length for 25 φ rebars

$$L_d = 56 \varphi$$

Anchorage length of 90° bend

$$L_{o} = 8\Phi$$
 $= 8x25$
 $= 200mm$

 $L_d \leq 1.3M_1/V_u + L_o$

$$56\varphi \le (1.3x75.425x10^6/144.2 \times 10^3) + 200$$

$$\phi \le 880/56 \text{ mm}$$

$$\phi \le 15.7$$

we provide 25mm. Hence ok.

$$0.08L = 0.08(5362.5)$$

= 429mm

Provide 25 φ of 50% of curtailment @ 429mm for support.

Step 10: Design of footpath

width of footpath
$$= 1m$$

depth of footpath
$$= 0.6m$$

dead load
$$= 0.6x1x24$$

$$= 14.4 \text{ kN/m}$$

assumed parapet load (railing) = 5kN/m

live load
$$= 3x1$$

= 3kN/m

total load = 22.4kN/m

Maximum factored bending moment

$$= (1.5x22.5x2.3625^2)/8$$

= 120.77 kNm

BM due to vehicle loading = 0.6x150.85

= 90.51 kNm

Total BM, $M_u = 120.77+90.51$

= 211.3 kNm

Effective depth = 600 - [25+25/2]

= 562.5 mm

 $A_{st} = 211.3x10^6 / 200x0.9x562.5$

 $= 2087 \text{mm}^2$

Provide 4nos of 25mm φ bars @ bottom and 4nos of 12mm φ bars @ top with 10mm φ stirrups @ 300mm c/c spacing.

Reinforcement details

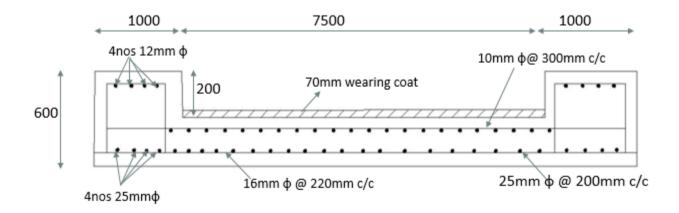


Fig. 2.1 Cross section

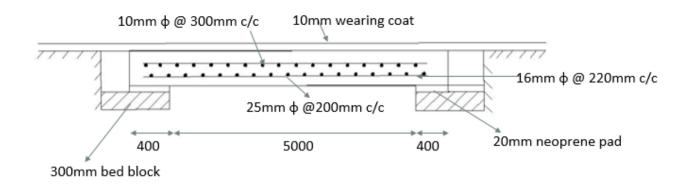


Fig. 2.2 Cross section

