
 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT-III EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

UNIT-III

NON LINERAR DATA STRUCTURES

Arrays and its representations – Stacks and Queues – Linked lists – Linked list-based
implementation of Stacks and Queues – Evaluation of Expressions – Linked list based
polynomial addition.

 Definition:

 Data structure is a particular way of organizing, storing and retrieving data, so that it can be

used efficiently. It is the structural representation of logical relationships between elements of

data.

Where data structures are used?

 Data structures are used in almost every program or software system. Different kinds of data

structures are suited to different kinds of applications, and some are highly specialized to

specific tasks.

 Applications in which data structures are applied extensively
o Compiler design (Hash tables),
o Operating system,
o Database management system (B+Trees),
o Statistical analysis package,
o Numerical analysis (Graphs),
o Graphics,
o Artificial intelligence,
o Simulation

Classification of data structure

 Primitive Data Structure - Primitive data structures are predefined types of data, which are

supported by the programming language. These are the basic data structures and are directly

operated upon by the machine instructions, which is in a primitive level.

 Non-Primitive Data Structure - Non-primitive data structures are not defined by the

programming language, but are instead created by the programmer. It is a more sophisticated

data structure emphasizing on structuring of a group of homogeneous (same type) or

heterogeneous (different type) data items.

 Linear data structure- only two elements are adjacent to each other. (Each node/element has a

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT-III EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

single successor)
o Restricted list (Addition and deletion of data are restricted to the ends of the list)

 Stack (addition and deletion at top end)
 Queue (addition at rear end and deletion from front end)

o General list (Data can be inserted or deleted anywhere in the list: at the beginning, in the
middle or at the end)

 Non-linear data structure- One element can be connected to more than two adjacent

elements.(Each node/element can have more than one successor)
o Tree (Each node could have multiple successors but just one predecessor)
o Graph (Each node may have multiple successors as well as multiple predecessors)

Note - Array and Linked list are the two basic structures for implementing all other ADTs.

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT-III EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

MODULARITY

 Module- A module is a self-contained component of a larger software system.Each module

is a logical unit and does a specific job. Its size kept small by calling other modules.

 Modularity is the degree to which a system's components may be separated and recombined.

Modularity refers to breaking down software into different parts called modules.

 Advantages of modularity
o It is easier to debug small routines than large routines.
o Modules are easy to modify and to maintain.
o Modules can be tested independently.
o Modularity provides reusability.
o It is easier for several people to work on a modular program simultaneously.

ABSTRACT DATA TYPE

What is Abstract Data Type (ADT)?

 ADT is a mathematical specification of the data, a list of operations that can be carried out on

that data. It includesthe specification of what it does, but excludes the specification of how it

does. Operations on set ADT: Union, Intersection, Size and Complement.

 The primary objective is to separate the implementation of the abstract data types from their

function. The program must know what the operations do, but it is actually better off not

knowing how it is done. Three most common used abstract data types are Lists, Stacks, and

Queues.

 ADT is an extension of modular design. The basic idea is that the implementation of these

operations is written once in the program, and any other part of the program that needs to

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT-III EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

perform an operation on the ADT can do so by calling the appropriate function. If for some

reason implementation details need to change, it should be easy to do so by merely changing

the routines that perform the ADT operations. This change, in a perfect world, would be

completely transparent to the rest of the program.

 Examples of ADT: Stack, Queue, List, Trees, Heap, Graph, etc.

 Benefits of using ADTs or Why ADTs

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT-III EC8393-FUNDAMENTALS OF DATA STRUCTUES IN C

o Code is easier to understand. Provides modularity and reusability.
o Implementations of ADTs can be changed without requiring changes to the program that uses

the ADTs.
LIST ADT

 List is a linear collection of ordered elements. The general form of the list of size N is: A0, A1,

…, AN-1
o Where A1 - First element

AN - Last

Element N -

Size of the list
o If the element at position 'i' is Ai then its successor is Ai+1 and its predecessor is Ai-1.

 Various operations performed on a List ADT
o Insert (X,5) - Insert the element X after the position 5.
o Delete (X) - The element X is deleted.
o Find (X) - Returns the position of X
o Next (i) - Returns the position of its successor element i+1.
o Previous (i) - Returns the position of its Predecessor element i-1.
o PrintList - Displays the List contents.
o MakeEmpty - Makes the List empty.

 Implementation of List ADT
o Array implementation
o Linked List implementation
o Cursor implementation

ARRAY IMPLEMENTATION OF LIST ADT

 An array is a collection of homogeneous data elements described by a single name. Each

element of an array is referenced by a subscripted variable or value, called subscript or index

enclosed in parenthesis. In array implementation, elements of list are stored in contiguous cells

of an array. Find Kth operation takes constant time. Print List, Find operations take linear

time.
 Advantages - Searching an array for an individual element can be very efficient - Fast, random

access of elements.
 Limitations - Array implementation has some limitations such as

1. Maximum size must be known in advance, even if it is dynamically allocated.

2. The size of array can’t be changed after its declaration (static data structure). i.e., the size is

fixed.

3. Data are stored in continuous memory blocks.

4. The running time for Insertion and deletion of elements is so slow. Inserting and deletion

requires shifting other data in the array. For example, inserting at position 0 requires first

pushing the entire array down one spot to make room, whereas deleting the first element

requires shifting all the elements in the list up one, so the worst case of these operations is

O(n). On average, half the list needs to be moved for either operation, so linear time is still

required.

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT-III EC8393-FUNDAMENTALS OF DATA STRUCTUES IN C

5. Memory is wasted, as the memory remains allocated to the array throughout the program

execution even few nodes are stored.

Deleting an item

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT-III EC8393-FUNDAMENTALS OF DATA STRUCTUES IN C

Type Declarations #define Max 10
int A[Max],N;

Routine to insert an Element in the specified position
void insert(int x, int p, int A[], int N)

{

int i; If(p==N)

printf(“Array Overflow”);

else
{
for(i=N-1;i>=p-1;i--) A[i+1]=A[i];

A[p-1]=x; N=N+1;

}

}

Routine to delete an Element in the specified
int deletion(int p, int A[],int N)

{

int Temp; If(p==N)

Temp=A[p-1]; else

{

Temp=A[p-1]; For(i=p-1;i<=N-1;i++)

A[i]=A[i+1];

}

N=N-1;
return Temp;
}

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT-III EC8393-FUNDAMENTALS OF DATA STRUCTUES IN C

Find Routine
void Find (int X)

{

int i,f=0; for(i=0;i<N;i++) if(a[i]==x)

{ f=1;

break;
}
if (f==1)
printf(“Element found”);

else

printf(“Element not found”);

}

	Where data structures are used?
	Classification of data structure
	MODULARITY
	ABSTRACT DATA TYPE
	 Benefits of using ADTs or Why ADTs
	LIST ADT
	 Implementation of List ADT
	ARRAY IMPLEMENTATION OF LIST ADT

