Regular Expression

- The language accepted by finite automata can be easily described by simple expressions called Regular Expressions. It is the most effective way to represent any language.
- The languages accepted by some regular expression are referred to as Regular languages.
- A regular expression can also be described as a sequence of pattern that defines a string.
- Regular expressions are used to match character combinations in strings. String searching algorithm used this pattern to find the operations on a string.

For instance:

In a regular expression, x* means zero or more occurrence of x. It can generate {e, x, xx, xxx, xxxx,}

In a regular expression, x^{\dagger} means one or more occurrence of x. It can generate {x, xx, xxx, xxxx,}

Operations on Regular Language

The various operations on regular language are:

Union: If L and M are two regular languages then their union L U M is also a union.

 $L \cup M = \{s \mid s \text{ is in } L \text{ or } s \text{ is in } M\}$

Intersection: If L and M are two regular languages then their intersection is also an intersection.

 $L \cap M = \{st \mid s \text{ is in } L \text{ and } t \text{ is in } M\}$

Kleen closure: If L is a regular language then its Kleen closure L1* will also be a regular language.

KANYP

L* = Zero or more occurrence of language L.

Example :

Write the regular expression for the language accepting all combinations of a's, over the set $\Sigma = \{a\}$

Solution:

All combinations of a's means a may be zero, single, double and so on. If a is appearing zero times, that means a null string. That is we expect the set of $\{\varepsilon, a, aa, aaa,\}$. So we give a regular expression for this as:

1. R = a*

That is Kleen closure of a.

Example :

Write the regular expression for the language accepting all combinations of a's except the null string, over the set $\Sigma = \{a\}$

Solution:

The regular expression has to be built for the language

1. L = {a, aa, aaa,}

This set indicates that there is no null string. So we can denote regular expression as:

$R = a^+$

Example 3:

Write the regular expression for the language accepting all the string containing any number of a's and b's.

Solution:

The regular expression will be:

```
1. r.e. = (a + b)*
```

This will give the set as $L = \{\varepsilon, a, aa, b, bb, ab, ba, aba, bab,\}$, any combination of a and b.

The (a + b)* shows any combination with a and b even a null string.

Examples of Regular Expression

Example :

Write the regular expression for the language accepting all the string which are starting with 1 and ending with 0, over $\Sigma = \{0, 1\}$.

Solution:

In a regular expression, the first symbol should be 1, and the last symbol should be 0. The r.e. is as follows:

1. R = 1 (0+1)* 0

Example :

Write the regular expression for the language starting and ending with a and having any having any combination of b's in between.

Solution:

The regular expression will be:

1. R = a b* b

Example :

Write the regular expression for the language starting with a but not having consecutive b's.

Solution: The regular expression has to be built for the language:

1. L = {a, aba, aab, aba, aaa, abab,}

The regular expression for the above language is:

1. R = {a + ab}*

Example :

Write the regular expression for the language accepting all the string in which any number of a's is followed by any number of c's.

Solution: As we know, any number of a's means a* any number of b's means b*, any number of c's means c*. Since as given in problem statement, b's appear after a's and c's appear after b's. So the regular expression could be:

Conversion of RE to FA

To convert the RE to FA, we are going to use a method called the subset method. This method is used to obtain FA from the given regular expression. This method is given below:

Step 1: Design a transition diagram for given regular expression, using NFA with ε moves.

Step 2: Convert this NFA with ε to NFA without ε .

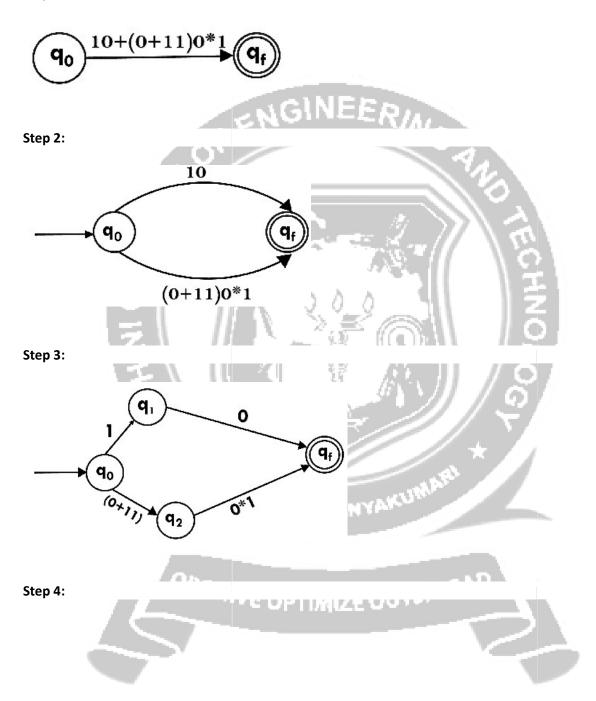
Step 3: Convert the obtained NFA to equivalent DFA.

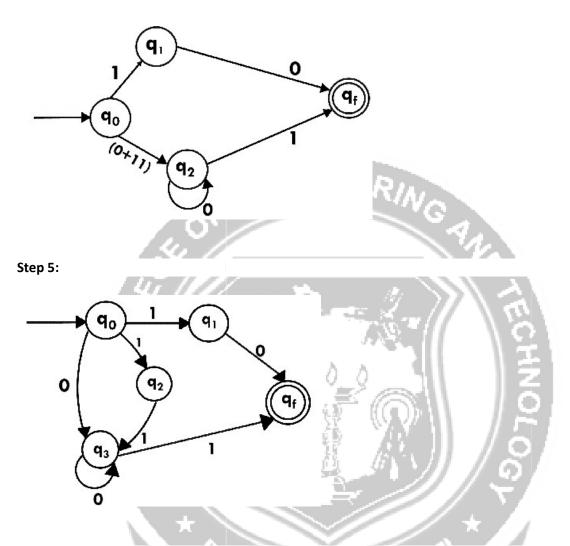
Example :

Design a FA from given regular expression $10 + (0 + 11)0^* 1$.

Solution: First we will construct the transition diagram for a given regular expression.

Step 1:





Now we have got NFA without ϵ . Now we will convert it into required DFA for that, we will first write a transition table for this NFA.

IN THE AVERAGE AND

State	0	1	END
→ q0	q3	{q1, q2}	- AU
q1	qf	φ	
q2	φ	q3	
q3	q3	qf	

The equivalent DFA will be:

State	0	1	
→[q0]	[q3]	[q1, q2]	
[q1]	[qf]	φ	6
[q2]	Φ	[q3]	E
[q3]	[q3]	[qf]	CHNO
[q1, q2]	[qf]	[qf]	240
*[qf]	Φ	φ	କ୍

