
ROHINI COLEGE OF ENGINEERING AND TECHNOLOGY

CS8602 COMPILER DESIGN

Regular Expression

o The language accepted by finite automata can be easily described by simple expressions called

Regular Expressions. It is the most effective way to represent any language.

o The languages accepted by some regular expression are referred to as Regular languages.

o A regular expression can also be described as a sequence of pattern that defines a string.

o Regular expressions are used to match character combinations in strings. String searching

algorithm used this pattern to find the operations on a string.

For instance:

In a regular expression, x* means zero or more occurrence of x. It can generate {e, x, xx, xxx, xxxx,}

In a regular expression, x+ means one or more occurrence of x. It can generate {x, xx, xxx, xxxx,}

Operations on Regular Language

The various operations on regular language are:

Union: If L and M are two regular languages then their union L U M is also a union.

 L U M = {s | s is in L or s is in M}

Intersection: If L and M are two regular languages then their intersection is also an intersection.

L ⋂ M = {st | s is in L and t is in M}

Kleen closure: If L is a regular language then its Kleen closure L1* will also be a regular language.

 L* = Zero or more occurrence of language L.

Example :

Write the regular expression for the language accepting all combinations of a's, over the set ∑ = {a}

Solution:

All combinations of a's means a may be zero, single, double and so on. If a is appearing zero times, that
means a null string. That is we expect the set of {ε, a, aa, aaa,}. So we give a regular expression for
this as:

1. R = a*

ROHINI COLEGE OF ENGINEERING AND TECHNOLOGY

CS8602 COMPILER DESIGN

That is Kleen closure of a.

Example :

Write the regular expression for the language accepting all combinations of a's except the null string,
over the set ∑ = {a}

Solution:

The regular expression has to be built for the language

1. L = {a, aa, aaa,}

This set indicates that there is no null string. So we can denote regular expression as:

R = a+

Example 3:

Write the regular expression for the language accepting all the string containing any number of a's and
b's.

Solution:

The regular expression will be:

1. r.e. = (a + b)*

This will give the set as L = {ε, a, aa, b, bb, ab, ba, aba, bab,}, any combination of a and b.

The (a + b)* shows any combination with a and b even a null string.

Examples of Regular Expression

Example :

Write the regular expression for the language accepting all the string which are starting with 1 and
ending with 0, over ∑ = {0, 1}.

Solution:

In a regular expression, the first symbol should be 1, and the last symbol should be 0. The r.e. is as
follows:

1. R = 1 (0+1)* 0

ROHINI COLEGE OF ENGINEERING AND TECHNOLOGY

CS8602 COMPILER DESIGN

Example :

Write the regular expression for the language starting and ending with a and having any having any
combination of b's in between.

Solution:

The regular expression will be:

1. R = a b* b

Example :

Write the regular expression for the language starting with a but not having consecutive b's.

Solution: The regular expression has to be built for the language:

1. L = {a, aba, aab, aba, aaa, abab,}

The regular expression for the above language is:

1. R = {a + ab}*

Example :

Write the regular expression for the language accepting all the string in which any number of a's is
followed by any number of b's is followed by any number of c's.

Solution: As we know, any number of a's means a* any number of b's means b*, any number of c's
means c*. Since as given in problem statement, b's appear after a's and c's appear after b's. So the
regular expression could be:

Conversion of RE to FA

To convert the RE to FA, we are going to use a method called the subset method. This method is used to
obtain FA from the given regular expression. This method is given below:

Step 1: Design a transition diagram for given regular expression, using NFA with ε moves.

Step 2: Convert this NFA with ε to NFA without ε.

Step 3: Convert the obtained NFA to equivalent DFA.

Example :

Design a FA from given regular expression 10 + (0 + 11)0* 1.

Solution: First we will construct the transition

Step 1:

Step 2:

Step 3:

Step 4:

ROHINI COLEGE OF ENGINEERING AND TECHNOLOGY

CS8602 COMPILER DESIGN

First we will construct the transition diagram for a given regular expression.

ROHINI COLEGE OF ENGINEERING AND TECHNOLOGY

CS8602 COMPILER DESIGN

Step 5:

Now we have got NFA without ε. Now we will convert it into required DFA for that, we will first write a
transition table for this NFA.

State 0

→q0 q3

q1 qf

q2 ϕ

q3 q3

ROHINI COLEGE OF ENGINEERING AND TECHNOLOGY

CS8602 COMPILER DESIGN

Now we have got NFA without ε. Now we will convert it into required DFA for that, we will first write a

1

{q1, q2}

ϕ

q3

qf

ROHINI COLEGE OF ENGINEERING AND TECHNOLOGY

CS8602 COMPILER DESIGN

Now we have got NFA without ε. Now we will convert it into required DFA for that, we will first write a

ROHINI COLEGE OF ENGINEERING AND TECHNOLOGY

CS8602 COMPILER DESIGN

*qf ϕ ϕ

The equivalent DFA will be:

State 0 1

→[q0] [q3] [q1, q2]

[q1] [qf] ϕ

[q2] Φ [q3]

[q3] [q3] [qf]

[q1, q2] [qf] [qf]

*[qf] Φ ϕ

