PROPERTIES OF EIGEN VALUES AND EIGEN VECTORS

Property: 1(a) The sum of the Eigen values of a matrix is equal to the sum of the elements of the principal (main) diagonal.

(or)

The sum of the Eigen values of a matrix is equal to the trace of the matrix.

1. (b) product of the Eigen values is equal to the determinant of the matrix.

Proof:

Let A be a square matrix of order n.

The characteristic equation of A is $|A - \lambda I| = 0$

$$(i.e.)\lambda^n - S_1\lambda^{n-1} + S_2\lambda^{n-2} - \dots + (-1)S_n = 0 \qquad \dots (1)$$

where

 $S_1 = Sum of the diagonal elements of A.$

. . .

. . .

 $S_n = determinant of A.$

We know the roots of the characteristic equation are called Eigen values of the given matrix.

Solving (1) we get n roots.

Let the *n* be $\lambda_1, \lambda_2, \dots \lambda_n$.

i.e., λ_1 , λ_2 , ... λ_n . are the Eignvalues of A.

We know already,

 λ^n — (Sum of the roots λ^{n-1} + [sum of the product of the roots taken two at a time] λ^{n-2} —

OF SERVE OF
$$1 + (-1)^n$$
 (Product of the roots) = 0

... (2)

Sum of the roots = $S_1 by$ (1)&(2)

$$(i.e.) \lambda_1 + \lambda_2 + \cdots + \lambda_n = S_1$$

$$(i.e.) \lambda_1 + \lambda_2 + \cdots + \lambda_n = a_{11} + a_{22} + \cdots + a_{nn}$$

Sum of the Eigen values = Sum of the main diagonal elements

Product of the roots = S_n by (1)&(2)

$$(i.e.)\lambda_1\lambda_2...\lambda_n = \det \operatorname{of} A$$

Product of the Eigen values = |A|

Property: 2 A square matrix A and its transpose A^T have the same Eigenvalues.

(or)

A square matrix A and its transpose A^T have the same characteristic values.

Proof:

Let A be a square matrix of order *n*.

The characteristic equation of A and A^T are

$$|A - \lambda I| = 0$$

and

$$|A^{\mathrm{T}} - \lambda I| = 0 \qquad \dots (2)$$

Since, the determinant value is unaltered by the interchange of rows and columns.

We know $|A| = |A^T|$

Hence, (1) and (2) are identical.

 \therefore The Eigenvalues of A and A^T are the same.

Property: 3 The characteristic roots of a triangular matrix are just the diagonal elements of the matrix.

(or)

The Eigen values of a triangular matrix are just the diagonal elements of the matrix.

Proof: Let us consider the triangular

Characteristic equation of is

matrix.

$$A = \begin{bmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & 0 \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \qquad i.e., \begin{vmatrix} a_{11} - \lambda & 0 & 0 \\ a_{21} & a_{22} - \lambda & 0 \\ a_{31} & a_{32} & a_{33} - \lambda \end{vmatrix} = 0$$

On expansion it gives $(a_{11} - \lambda)(a_{22} - \lambda)(a_{33} - \lambda) = 0$

i.e.,
$$\lambda = a_{11}$$
, a_{22} , a_{33}

which are diagonal elements of the matrix A.

Property: 4 If λ is an Eigenvalue of a matrix A, then $\frac{1}{\lambda}$, $(\lambda \neq 0)$ is the Eignvalue of A⁻¹.

(or)

If λ is an Eigenvalue of a matrix A, what can you say about the Eigenvalue of matrix A^{-1} . Prove your statement.

Proof:

If X be the Eigenvector corresponding to λ ,

then
$$AX = \lambda X$$
 ... (i)

Pre multiplying both sides by A^{-1} , we get

$$A^{-1}AX = A^{-1}\lambda X$$

$$(1) \Rightarrow X = \lambda A^{-1}X$$

$$X = \lambda A^{-1}X$$

$$\vdots \lambda \Rightarrow \frac{1}{\lambda}X = A^{-1}X \quad \text{IGINEE}$$

$$(i.e.) \quad A^{-1}X = \frac{1}{\lambda}X$$

This being of the same form as (i), shows that $\frac{1}{\lambda}$ is an Eigenvalue of the inverse matrix A^{-1} .

Property: 5 If λ is an Eigenvalue of an orthogonal matrix, then $\frac{1}{\lambda}$ is an Eigenvalue.

Proof:

Definition: Orthogonal matrix.

A square matrix A is said to be orthogonal if $AA^T = A^TA = I$

i.e.,
$$A^{T} = A^{-1}$$

Let A be an orthogonal matrix.

Given λ is an Eignevalue of A.

$$\Rightarrow \frac{1}{\lambda}$$
 is an Eigenvalue of A^{-1}

Since, $A^T = A^{-1}$

$$\therefore \frac{1}{\lambda}$$
 is an Eigenvalue of A^T

But, the matrices A and A^T have the same Eigenvalues, since the determinants

 $|A - \lambda I|$ and $|A^T - \lambda I|$ are the same.

Hence, $\frac{1}{\lambda}$ is also an Eigenvalue of A.

Property: 6 If $\lambda_1, \lambda_2, \dots \lambda_n$ are the Eignvalues of a matrix A, then A^m has the Eigenvalues $\lambda_1^m, \lambda_2^m, \dots, \lambda_n^m$ (m being a positive integer)

Proof:

Let A_i be the Eigenvalue of A and X_i the corresponding Eigenvector.

Then
$$AX_i = \lambda_i X_i \dots (1)$$

We have
$$A^2X_i = A(AX_i)$$

$$= A(\lambda_i X_i)$$

$$= \lambda_i A(X_i)$$

$$= \lambda_i (\lambda_i X_i)$$

$$= \lambda_i^2 X_i$$

$$||| 1y A^3 X_i = \lambda_i^3 X_i$$
In general, $A^m X_i = \lambda_i^m X_i$ (2) ISINE ENHAGE.

Hence, λ_i^m is an Eigenvalue of A^m .

The corresponding Eigenvector is the same X_i .

Note: If λ is the Eigenvalue of the matrix A then λ^2 is the Eigenvalue of A^2

Property: 7 The Eigen values of a real symmetric matrix are real numbers.

Proof:

Let λ be an Eigenvalue (may be complex) of the real symmetric matrix A. Let the corresponding Eigenvector be X. Let A denote the transpose of A.

We have
$$AX = \lambda X$$

Pre-multiplying this equation by $1 \times n$ matrix \overline{X}' , where the bar denoted that all elements of \overline{X}' are the complex conjugate of those of X', we get

$$\overline{X'}AX = \lambda \overline{X'}X \quad \dots (1)$$

Taking the conjugate complex of this we get $X' A \overline{X} = \overline{\lambda} X' \overline{X}$ or

$$X'A \overline{X} = \overline{\lambda} X' \overline{X}$$
 since, $\overline{A} = A$ for A is real.

Taking the transpose on both sides, we get

$$(X'A\overline{X})' = (\overline{\lambda} X'\overline{X})'(i.e.,)\overline{X'} A' X = \overline{\lambda} \overline{X'} X$$

 $(i.e.)\overline{X'}$ A' $X = \overline{\lambda} \overline{X'} X$ since A' = A for A is symmetric.

But, from (1),
$$\overline{X'}$$
 A $X = \lambda \overline{X'} X$ Hence $\lambda \overline{X'} X = \overline{\lambda} \overline{X'} X$

Since, $\overline{X'}$ X is an 1×1 matrix whose only element is a positive value, $\lambda = \overline{\lambda}$ (i.e.) λ is real).

Property: 8 The Eigen vectors corresponding to distinct Eigen values of a real symmetric matrix are orthogonal.

Proof:

For a real symmetric matrix A, the Eigen values are real.

Let X_1, X_2 be Eigenvectors corresponding to two distinct eigen values λ_1, λ_2 [λ_1, λ_2 are real]

$$AX_1 = \lambda_1 X_1 \qquad \dots (1)$$

$$AX_2 = \lambda_2 X_2 \qquad \dots (2)$$

Pre multiplying (1) by X_2' , we get

$$\begin{aligned} X_2'AX_1 &= X_2'\lambda_1X_1 \\ &= \lambda_1X_2'X_1 \end{aligned}$$

Pre-multiplying (2) by X_1' , we get $X_1 \subseteq X_1 \subseteq X_2 \subseteq X_1$

$$X_1'AX_2 = \lambda_2 X_1'X_2 \qquad(3)$$

$$But(X_2'AX_1)' = (\lambda_1 X_2'X_1)'$$

$$X_1'A X_2 = \lambda_1 X_1' X_2$$

(i.e)
$$X_1'A X_2 = \lambda_1 X_1' X_2$$
 (4) [: A' = A]

From (3) and (4)

$$\lambda_1 X_1' X_2 = \overline{\lambda_2} X_1' X_2$$

$$(i.e.,)(\lambda_1 - \lambda_2)X_1'X_2 = 0$$

$$\lambda_1 \neq \lambda_2$$
, $X_1' X_2 = 0$

 $\therefore X_1$, X_2 are orthogonal.

Property: 9 The similar matrices have same Eigen values.

Proof:

Let A, B be two similar matrices.

Then, there exists an non-singular matrix P such that $B = P^{-1} AP$

$$B - \lambda I = P^{-1}AP - \lambda I$$

$$= P^{-1}AP - P^{-1}\lambda IP$$

$$|B-\lambda I|=|P^{-1}|\,|A-\lambda I|\,|P|$$

$$= |A - \lambda I| |P^{-1}P|$$

$$= |A - \lambda I| |I|$$

$$= |A - \lambda I|$$

Therefore, A, B have the same characteristic polynomial and hence characteristic roots.

∴ They have same Eigen values.

Property: 10 If a real symmetric matrix of order 2 has equal Eigen values, then the matrix is a scalar matrix.

Proof:

Rule 1 : A real symmetric matrix of order n can always be diagonalised.

Rule 2: If any diagonalized matrix with their diagonal elements are equal, then the matrix is a scalar matrix.

Given A real symmetric matrix 'A' of order 2 has equal Eigen values.

By Rule: 1 A can always be diagonalized, let λ_1 and λ_2 be their Eigenvalues then

we get the diagonlized matrix $=\begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$

$$Given \lambda_1 = \lambda_2$$

Therefore, we get
$$=\begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

By Rule: 2 The given matrix is a scalar matrix.

Property: 11 The Eigen vector X of a matrix A is not unique.

Proof:

Let λ be the Eigenvalue of A, then the corresponding Eigenvector X such that $AX = \lambda X$. Multiply both sides by non-zero K,

$$K(AX) = K(\lambda X)$$

$$\Rightarrow$$
 A (KX) = λ (KX)

(i.e.) an Eigenvector is determined by a multiplicative scalar.

(i.e.) Eigenvector is not unique.

Property: 12 $\lambda_1, \lambda_2, \dots \lambda_n$ be distinct Eigenvalues of an $n \times n$ matrix, then the corresponding Eigenvectors $X_1, X_2, \dots X_n$ form a linearly independent set.

Proof:

Let $\lambda_1, \lambda_2, \dots \lambda_m (m \le n)$ be the distinct Eigen values of a square matrix A of order n.

Let X_1, X_2 , ... X_m be their corresponding Eigenvectors we have to prove $\sum_{i=1}^m \alpha_i X_i = 0$ implies each $\alpha_i = 0, i = 1, 2, ..., m$

Multiplying
$$\sum_{i=1}^m \alpha_i \, \mathbf{X_i} = \mathbf{0}$$
 by $(\mathbf{A} - \lambda_1 \mathbf{I})$, we get

$$(A - \lambda_1 I)\alpha_1 X_1 = \alpha_1 (AX_1 - \lambda_1 X_1) = \alpha_1 (0) = 0$$

When $\sum_{i=1}^{m} \alpha_i X_i = 0$ Multiplied by

$$(\mathsf{A}-\lambda_2\mathsf{I})(\mathsf{A}-\lambda_2\mathsf{I})\dots(\mathsf{A}-\lambda_{i-1}\mathsf{I})(\mathsf{A}-\lambda_i\mathsf{I})\;(\mathsf{A}-\lambda_{i+1}\mathsf{I})\dots\;(\mathsf{A}-\lambda_m\mathsf{I})$$

We get,
$$\alpha_i(\lambda_i - \lambda_1)(\lambda_i - \lambda_2) \dots (\lambda_i - \lambda_{i-1})(\lambda_i - \lambda_{i+1}) \dots (\lambda_i - \lambda_m) = 0$$

Since, λ 's are distinct, $\alpha_i = 0$

Since, *i* is arbitrary, each $\alpha_i = 0$, i = 1, 2, ..., m

 $\sum_{i=1}^{m} \alpha_i X_i = 0$ implies each $\alpha_i = 0$, i = 1, 2, ..., m

Hence, X_1, X_2 , ... X_m are linearly independent.

Property: 13 If two or more Eigen values are equal it may or may not be possible to get linearly

independent Eigenvectors corresponding to the equal roots.

Property: 14 Two Eigenvectors X_1 and X_2 are called orthogonal vectors if $X_1^T X_2 = 0$ Property: 15 If A and B are $n \times n$ matrices and B is a non singular matrix, then A and B^{-1} AB have same eigenvalues.

Proof:

Characteristic polynomial of B^{-1} AB

=
$$|B^{-1} AB - \lambda I|$$
 = $|B^{-1} AB - B^{-1}(\lambda I)B|$
= $|B^{-1} (A - \lambda I)B|$ = $|B^{-1}||A - \lambda I||B|$
= $|B^{-1}||B|||A - \lambda I|$ = $|B^{-1}B||A - \lambda I|$
= Characterisstisc polynomial of A

Hence, A and B⁻¹ AB have same Eigenvalues.

Example: Find the sum and product of the Eigen values of the matrix $\begin{bmatrix} -2 \\ 2 \end{bmatrix}$

Solution:

Sum of the Eigen values = Sum of the main diagonal elements

Product of the Eigen values = $\begin{vmatrix}
-2 & 2 & -3 \\
2 & 1 & -6 \\
1 & 2 & 0
\end{vmatrix}$ =-2(0-12)-2(0-6)-3(-4+1)= 24 + 12 + 9 = 45

Example: Find the sum and product of the Eigen values of the matrix $A = \begin{bmatrix} -1 & 2 & 1 \end{bmatrix}$

Solution:

Sum of the Eigen values = Sum of its diagonal elements = 1 + 2 + 1 = 4

Product of Eigen values
$$= |C| = \begin{vmatrix} 1 & 2 & 3 \\ -1 & 2 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

 $= 1(2-1) - 2(-1-1) + 3(-1-2)$
 $= 1(1) - 2(-2) + 3(-3)$
 $= 1 + 4 - 9 = -4$

Example: The product of two Eigen values of the matrix $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ is 16. Find

the third Eigenvalue.

Solution:

Let Eigen values of the matrix A be $\lambda_1, \lambda_2, \lambda_3$.

Given
$$\lambda_1 \lambda_2 = 16$$

We know that, $\lambda_1 \lambda_2 \lambda_3 = |A|$

[Product of the Eigen values is equal to the determinant of the matrix]

Example: Two of the Eigen values of $\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ are 2 and 8. Find the third Eigen

value.

Solution:

We know that, Sum of the Eigen values = Sum of its diagonal elements

$$= 6 + 3 + 3 = 12$$

Given
$$\lambda_1 = 2, \lambda_2 = 8, \lambda_3 = ?$$

We get,
$$\lambda_1 + \lambda_2 + \lambda_3 = 12$$

 $2 + 8 + \lambda_3 = 12$
 $\lambda_3 = 12 - 10$
 $\lambda_3 = 2$

 \therefore The third Eigenvalue = 2

Example: If 3 and 15 are the two Eigen values of $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$ find |A|, without expanding the determinant.

Solution:

Given
$$\lambda_1 = 3, \lambda_2 = 15, \lambda_3 = ?$$

We know that, Sum of the Eigen values = Sum of the main diagonal elements

$$\Rightarrow \lambda_1 + \lambda_2 + \lambda_3 = 8 + 7 + 3$$
$$3 + 15 + \lambda_3 = 18$$
$$\Rightarrow \lambda_3 = 0$$

We know that, Product of the Eigen values = |A|

$$\Rightarrow (3)(15)(0) = |A|$$

$$\Rightarrow |A| = (3)(15)(0)$$

$$\Rightarrow |A| = 0$$

Example: If 2, 2, 3 are the Eigen values of $A = \begin{bmatrix} 3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7 \end{bmatrix}$ find the Eigen values of

 A^{T} .

Solution:

By Property "A square matrix A and its transpose A^T have the same Eigen values". Hence, Eigen values of A^T are 2, 2, 3

Example: If the Eigen values of the matrix $A = \begin{bmatrix} 1 & 1 \\ 3 & -1 \end{bmatrix}$ are 2, -2 then find the Eigen values of A^{T} .

Solution:

Eigen values of $A = \text{Eigen values } of A^T$ $\therefore \text{ Eigen values } of A^T \text{ are } 2, -2.$ Example: Two of the Eigen values of $A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$ are 3 and 6. Find the Eigen

values of A^{-1} .

Solution:

Sum of the Eigen values = Sum of the main diagonal elements

$$= 3 + 5 + 3 = 11$$

Let K be the third Eigen value

$$\therefore 3 + 6 + k = 11$$

$$\Rightarrow 9 + k = 11$$

$$\Rightarrow k = 2$$

 \therefore The Eigenvalues of A^{-1} are $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{6}$

Example: Two Eigen values of the matrix $A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$ are equal to 1 each. Find the

Eigenvalues of A^{-1} .

Solution:

Given
$$A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$$

Let the Eigen values of the matrix A be λ_1 , λ_2 , λ_3

Given condition is $\lambda_2 = \lambda_3 = 1$

We have, Sum of the Eigen values = Sum of the main diagonal elements

$$\Rightarrow \lambda_1 + \lambda_2 + \lambda_3 = 2 + 3 + 2$$

$$\Rightarrow \lambda_1 + 1 + 1 = 7$$

$$\Rightarrow \lambda_1 + 2 = 7$$

$$\Rightarrow \lambda_1 = 5$$

$$\Rightarrow \lambda_1 = 5$$

Hence, the Eigen values of A are 1, 1, 5

Eigen values of A^{-1} are $\frac{1}{1}$, $\frac{1}{1}$, $\frac{1}{5}$, i.e., $1, 1, \frac{1}{5}$