
Rohini college of Engineering and technology

19
CS8392 Object Oriented Programming

4.4 synchronizing threads
Synchronization in java is the capability to control the access of
multiple threads to any shared resource.
When we want to share the resource with multiple threads, we can

use the Java synchronization concept. So there is a need to

synchronize the action of multiple threads and make sure that only

one thread can access the resource at a given point in time. This is

implemented using a concept called monitors. Each object in Java

is associated with a monitor, which a thread can lock or unlock. Only

one thread at a time may hold a lock on a monitor.

4.4.1 Purpose of using synchronization
1. To prevent thread interference
2. To prevent consistency problem

4.4.2 Types of Thread synchronization
There are two types of thread synchronization mutual exclusive
and inter-thread communication.

1. Mutual Exclusive
1. Synchronized method.

2. Synchronized block.
3. static synchronization.

2. Cooperation (Inter-thread communication in java)

4.4.3 Mutual Exclusive
Mutual Exclusive helps keep threads from interfering with one
another while sharing data. This can be done by three ways in

java:
1. by synchronized method
2. by synchronized block
3. by static synchronization

4.4.3.1 Synchronized Method
If you declare any method as synchronized, it is known as

synchronized method. Synchronized method is used to lock an

Rohini college of Engineering and technology

20
CS8392 Object Oriented Programming

object for any shared resource. When a thread invokes a

synchronized method, it automatically acquires the lock for that
object and releases it when the thread completes its task.

Example Program: Without Synchronized Method class Table

{
void printTable(int n)
{//method not synchronized
for(int i=1;i<=5;i++) {

System.out.println(n*i);
try

{
Thread.sleep(400);

}
catch(Exception e){System.out.println(e);}

}
}
}
class MyThread1 extends Thread

{
Table t;

MyThread1(Table t)
{ this.t=t;

}
public void run()

{
t.printTable(5);

}
}

class MyThread2 extends Thread

{
Table t;
MyThread2(Table t)
{ this.t=t;

}
public void run()

{

Rohini college of Engineering and technology

21
CS8392 Object Oriented Programming

t.printTable(100);

}
}
class TestSynchronization1

{
public static void main(String args[])

{
Table obj = new Table();//only one object MyThread1 t1=new
MyThread1(obj);
MyThread2 t2=new MyThread2(obj); t1.start();
t2.start();

}
}

Output:
5
100
10

200
15

300
20
400
25
500

Example Program: With Synchronized Method class Table

{
synchronized void printTable(int n)
{//synchronized method
for(int i=1;i<=5;i++)

{
System.out.println(n*i);
try {

Thread.sleep(400);

}
catch(Exception e)

{

Rohini college of Engineering and technology

22
CS8392 Object Oriented Programming

System.out.println(e);

} }
} } class MyThread1 extends Thread {
Table t;

MyThread1(Table t)

{
this.t=t;

}
public void run()

{
t.printTable(5);

}

}
class MyThread2 extends Thread {

Table t;
MyThread2(Table t)
{ this.t=t;

}
public void run()

{
t.printTable(100);

}
}
public class TestSynchronization2

{
public static void main(String args[])

{
Table obj = new Table();//only one object MyThread1 t1=new
MyThread1(obj);
MyThread2 t2=new MyThread2(obj); t1.start();
t2.start();

}
}

Output:
5
10
15

Rohini college of Engineering and technology

23
CS8392 Object Oriented Programming

20

25
100
200
300
400
500

4.4.3.2 Synchronized Block
Synchronized block can be used to perform synchronization on any
specific resource of the method.Suppose you have 50 lines of code

in your method, but you want to synchronize only 5 lines, you can
use synchronized block.If you put all the codes of the method in
the synchronized block, it will work same as the synchronized
method.

Purpose of Synchronized Block
1. Synchronized block is used to lock an object for any shared

resource.
2. Scope of synchronized block is smaller than the method.

Syntax:
synchronized (object reference expression)

{
//code block

}

Example program:

class Table

{
void printTable(int n)

{
synchronized(this)
{//synchronized block for(int i=1;i<=5;i++) {
System.out.println(n*i);
try

{
Thread.sleep(400);

}

Rohini college of Engineering and technology

24
CS8392 Object Oriented Programming

catch(Exception e)

{
System.out.println(e);

}

}

}
}//end of the method

}
class MyThread1 extends Thread

{
Table t;
MyThread1(Table t)
{ this.t=t;

}
public void run()

{
t.printTable(5);

}
}
class MyThread2 extends Thread

{
Table t;
MyThread2(Table t)

{
this.t=t;

}
public void run()

{
t.printTable(100);

}
}
public class TestSynchronizedBlock1

{
public static void main(String args[])

{
Table obj = new Table();//only one object MyThread1 t1=new
MyThread1(obj);
MyThread2 t2=new MyThread2(obj); t1.start();

Rohini college of Engineering and technology

25
CS8392 Object Oriented Programming

t2.start();

}
}

Output:
5
10
15
20
25
100

200
300
400
500

4.4.3.3 Static Synchronization Block
If you make any static method as synchronized, the lock will be on
the class not on object.

Example Program:
class Table

{
synchronized static void printTable(int n)

{
for(int i=1;i<=10;i++)

{
System.out.println(n*i);
try

{
Thread.sleep(400);

}
catch(Exception e){}

}
}
}
class MyThread1 extends Thread

{
public void run()

Rohini college of Engineering and technology

26
CS8392 Object Oriented Programming

{
Table.printTable(1);

}
}
class MyThread2 extends Thread

{
public void run()

{
Table.printTable(10);

}
}
class MyThread3 extends Thread

{
public void run()

{
Table.printTable(100);

}
}
class MyThread4 extends Thread

{
public void run()

{
Table.printTable(1000);

}
}
public class TestSynchronization4

{
public static void main(String t[])

{
MyThread1 t1=new MyThread1();
MyThread2 t2=new MyThread2();

MyThread3 t3=new MyThread3();
MyThread4 t4=new MyThread4();
t1.start();
t2.start();
t3.start();
t4.start();

}
}

Rohini college of Engineering and technology

27
CS8392 Object Oriented Programming

Output:

1

2
3
4
5
6
7
8
9

10
10
20
30
40
50
60
70
80
90

100
100
200
300
400
500
600
700
800
900 1000

1000
2000 3000
4000 5000
6000 7000

Rohini college of Engineering and technology

28
CS8392 Object Oriented Programming

8000

9000
10000

4.5 Inter-thread Communication
Polling is a process in which the condition is repeatedly checked. If the
condition is true, appropriate action is taken. This wastes CPU time.

For example, consider the classic queuing problem, where one thread
is producing some data and another is consuming it. To make the
problem more interesting, suppose that the producer has to wait until

the consumer is finished before it generates more data. In a polling
system, the consumer would waste many CPU cycles while it waited for
the producer to produce. Once the producer was finished, it would start
polling, wasting more CPU cycles waiting for the consumer to finish,
and so on.

To avoid polling, Java includes an elegant interprocess communication
mechanism via the wait(), notify(), and notifyAll() methods. These
methods are implemented as final methods in Object, so all classes

have them. All three methods can be called only from within a
synchronized context.

• wait() tells the calling thread to give up the monitor and go to
sleep until some other thread enters the same monitor and calls
notify().

• notify() wakes up a thread that called wait() on the same
object.

• notifyAll() wakes up all the threads that called wait() on the
same object. One of the threads will be granted access.

The following methods are declared within Object:
final void wait() throws InterruptedException
final void notify()
final void notify All()

Example Program: class Q

{

Rohini college of Engineering and technology

29
CS8392 Object Oriented Programming

int n;
synchronized int get()

{
System.out.println("Got: " + n);
return n;

}
synchronized void put(int n)

{
this.n = n;
System.out.println("Put: " + n);

}
}
class Producer implements Runnable

{
Q q;
Producer(Q q)

{
this.q = q;
new Thread(this, "Producer").start();

}
public void run()

{
int i = 0;
while(true)

{
q.put(i++);

}
}
}
class Consumer implements Runnable

{
Q q;
Consumer(Q q)

{
this.q = q;
new Thread(this, "Consumer").start();

}

public void run()

Rohini college of Engineering and technology

30
CS8392 Object Oriented Programming

{
while(true)

{
q.get();

}
}
}
class PC

{
public static void main(String args[])

{
Q q = new Q();
new Producer(q);
new Consumer(q);
System.out.println("Press Control-C to stop.");

}
}

Output:
Put: 1
Got: 1

Got: 1
Got: 1
Got: 1
Got: 1
Put: 2
Put: 3
Put: 4
Put: 5
Put: 6
Put: 7
Got: 7

4.6 Daemon Threads
Daemon thread in java is a service provider thread that provides
services to the user thread. Its life depend on the mercy of user
threads i.e. when all the user threads dies, JVM terminates this thread
automatically.

Rohini college of Engineering and technology

31
CS8392 Object Oriented Programming

There are many java daemon threads running automatically e.g. gc,

finalizer etc.
You can see all the detail by typing the jconsole in the command
prompt. The jconsole tool provides information about the loaded
classes, memory usage, running threads etc.

4.6.1 Purpose of Daemon thread:

• It provides services to user threads for background supporting

tasks. It has no role in life than to serve user threads.

• Its life depends on user threads.

• It is a low priority thread.

4.6.2 Methods of Daemon Thread

Method Description

public void
setDaemon(boolean status)

is used to mark the
current thread as
daemon thread or user
thread.

public boolean isDaemon() is used to check that

current is daemon.

Table 4.2 Methods of Daemon Thread
Example Program:
public class TestDaemonThread1 extends Thread

{
public void run()

{
if(Thread.currentThread().isDaemon())

{
//checking for daemon thread
System.out.println("daemon thread work");

}
else

{
System.out.println("user thread work");

}

}
public static void main(String[] args)

Rohini college of Engineering and technology

32
CS8392 Object Oriented Programming

{

TestDaemonThread1 t1=new TestDaemonThread1();//creating th read
TestDaemonThread1 t2=new TestDaemonThread1();
TestDaemonThread1 t3=new TestDaemonThread1();
t1.setDaemon(true);//now t1 is daemon thread t1.start();//starting
threads
t2.start();
t3.start();

}
}

Output:
daemon thread work user thread work user thread work

