TRANSPOSITION TECHNIQUES

All the techniques examined so far involve the substitution of a ciphertext symbol for a plaintext symbol. A very different kind of mapping is achieved by performing some sort of permutation on the plaintext letters. This technique is referred to as a transposition cipher.

The simplest such cipher is the rail fence technique, in which the plaintext is written down as a sequence of diagonals and then read off as a sequence of rows. For example, to encipher the message "meet me after the toga party" with a rail fence of depth 2 , we write the following:
mematrhtgpry
etefeteoaat
The encrypted message is

MEMATRHTGPRYETEFETEOAAT

This sort of thing would be trivial to cryptanalyze. A more complex scheme is to write the message in a rectangle, row by row, and read the message off, column by column, but permute the order of the columns. The order of the columns then becomes the key to the algorithm. For example,

```
Key: \(\quad 4312567\)
plaintext: a t t a ckp
    ostpone
    duntilt
    wo amxyz
Ciphertext: TTNAAPTMTSUOAODWCOIXKNLYPETZ
```

Thus, in this example, the key is 4312567. To encrypt, start with the column that is labeled 1 , in this case column 3. Write down all the letters in that column. Proceed to column 4, which is labeled 2 , then column 2 , then column 1 , then columns 5,6 , and 7 .

A pure transposition cipher is easily recognized because it has the same letter frequencies as the original plaintext. For the type of columnar transposition just shown, cryptanalysis is fairly
straightforward and involves laying out the ciphertext in a matrix and playing around with column positions. Digram and trigram frequency tables can be useful.

The transposition cipher can be made significantly more secure by performing more than one stage of transposition. The result is a more complex permutation that is not easily reconstructed. Thus, if the foregoing message is reencrypted using the same algorithm,

```
Key: 4 3 1 2 5 6 7
Input: }\quadt\textrm{t}n\textrm{a}a\textrm{a
    mtsuoa o
    d w cooi x k
    n l y p e t z
Output: NSCYAUOPTTWLTMDNAOIEPAXTTOKZ
```

To visualize the result of this double transposition, designate the letters in the original plaintext message by the numbers designating their position. Thus, with 28 letters in the message, the original sequence of letters is

0102030405060708091011121314
1516171819202122232425262728

After the first transposition, we have

0310172404111825020916230108
1522051219260613202707142128
which has a somewhat regular structure. But after the second transposition, we have 1709052724161207100222200325

1513042319141101262118080628

This is a much less structured permutation and is much more difficult to cryptanalyze.

