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Duality in Lattice: 

When " ≤ " is a partial order relation on a set S, then its converse " ≥ " is also a 

partial order relation on S.  

Distributive lattice: 

A lattice (𝐿, ∧, ∨) is said to be distributive lattice if ∧ and ∨ satisfies the 

following conditions ∀𝑎, 𝑏, 𝑐 ∈ 𝐿 

 𝐷1: 𝑎 ∨ (𝑏 ∧ 𝑐) = (𝑎 ∨ 𝑏) ∧ (𝑎 ∨ 𝑐) 

 𝐷2: 𝑎 ∧ (𝑏 ∨ 𝑐) = (𝑎 ∧ 𝑏) ∨ (𝑎 ∧ 𝑐) 

Modular Inequality: 

If (𝑳, ∧, ∨) is a Lattice, then for any 𝒂, 𝒃, 𝒄 ∈ 𝑳, 𝒂 ≤ 𝒄 ⇔ 𝒂 ∨ (𝒃 ∧ 𝒄) ≤

(𝒂 ∨ 𝒃) ∧ 𝒄. 

Proof: 

Assume 𝑎 ≤ 𝑐 

 ⇒ 𝑎 ∨ 𝑐 = 𝑐         . . . (1) 

By, distributive inequality, we have  

 𝑎 ∨ (𝑏 ∧ 𝑐) ≤ (𝑎 ∨ 𝑏) ∧ (𝑎 ∨ 𝑐) 

 ⇒ 𝑎 ∨ (𝑏 ∧ 𝑐) ≤ (𝑎 ∨ 𝑏) ∧ 𝑐          (Using (1)) 
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Therefore, 𝑎 ≤ 𝑐 ⇔ 𝑎 ∨ (𝑏 ∧ 𝑐) ≤ (𝑎 ∨ 𝑏) ∧ 𝑐.       . . . (2) 

Conversely, assume 𝑎 ∨ (𝑏 ∧ 𝑐) ≤ (𝑎 ∨ 𝑏) ∧ 𝑐 

Now, by the definition of LUB and GLB, we have  

 𝑎 ≤ 𝑎 ∨ (𝑏 ∧ 𝑐) ≤ (𝑎 ∨ 𝑏) ∧ 𝑐 ≤ 𝑐 

 ⇒ 𝑎 ≤ 𝑐 

Hence 𝑎 ∨ (𝑏 ∧ 𝑐) ≤ (𝑎 ∨ 𝑏) ∧ 𝑐 ⇒ 𝑎 ≤ 𝑐          . . . (3) 

From (2) and (3), we have 𝑎 ≤ 𝑐 ⇔ 𝑎 ∨ (𝑏 ∧ 𝑐) ≤ (𝑎 ∨ 𝑏) ∧ 𝑐. 

Hence the proof. 

Modular Lattice: 

A Lattice (𝐿, ∧, ∨) is said to be Modular lattice if it satisfies the following 

condition. 

𝑀1: if 𝑎 ≤ 𝑐 then 𝑎 ∨ (𝑏 ∧ 𝑐) = (𝑎 ∨ 𝑏) ∧ 𝑐 

Theorem: 1  

Every distributive Lattice is Modular, but not conversely. 

Proof: 

Let (𝐿, ∧, ∨) be the given distributive lattice 
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 𝐷1: 𝑎 ∨ (𝑏 ∧ 𝑐) = (𝑎 ∨ 𝑏) ∧ (𝑎 ∨ 𝑐)  . . . (1) 

Now, if 𝑎 ≤ 𝑐 then 𝑎 ∨ 𝑐 = 𝑐     . . . (2) 

(1)(1) ⇒ 𝑎 ∨ (𝑏 ∧ 𝑐) = (𝑎 ∨ 𝑏) ∧ (𝑎 ∨ 𝑐) 

                                    = (𝑎 ∨ 𝑏) ∧ 𝑐   (using (2)) 

If 𝑎 ≤ 𝑐 then 𝑎 ∨ (𝑏 ∧ 𝑐) = (𝑎 ∨ 𝑏) ∧ 𝑐    

Therefore every distributive lattice is Modular. 

But, converse is not true. 

i.e., Every Modular Lattice need not be distributive. 

For example, 𝑀5 Lattice is Modular but it is not distributive. 

Hence the proof. 

Theorem: 2  

In any distributive lattice (𝑳, ∧, ∨) ∀𝒂, 𝒃, 𝒄 ∈ 𝑳. Prove that 

 𝒂 ∨ 𝒃 = 𝒂 ∨ 𝒄, 𝒂 ∧ 𝒃 = 𝒂 ∧ 𝒄 ⇒ 𝒃 = 𝒄 

Proof: 

Consider 𝑏 = 𝑏 ∨ (𝑏 ∧ 𝑎)                   (Absorption law)  

                     = 𝑏 ∨ (𝑎 ∧ 𝑏)                (Commutative law) 
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                     = 𝑏 ∨ (𝑎 ∧ 𝑐)                 (Given condition) 

                     = (𝑏 ∨ 𝑎) ∧ (𝑏 ∨ 𝑐)       (D1 – Condition) 

                     = (𝑎 ∨ 𝑏) ∧ (𝑏 ∨ 𝑐)        (Commutative law)  

                     = (𝑎 ∨ 𝑐) ∧ (𝑏 ∨ 𝑐)        (Using given condition)  

                      = (𝑐 ∨ 𝑎) ∧ (𝑐 ∨ 𝑏)       (Commutative law)  

                      = 𝑐 ∨ (𝑎 ∧ 𝑏)                 (By D1- condition) 

                      = 𝑐 ∨ (𝑎 ∧ 𝑐)                  (Given Condition)   

                      = 𝑐 ∨ (𝑐 ∧ 𝑎)                 (Commutative law) 

                       = 𝑐                                 (Absorption law)  

Lattice as a Algebraic system 

A Lattice is an algebraic system (𝐿, ∧, ∨) with two binary operation ∧ and ∨ on L 

which are both commutative, associative and satisfies absorption laws. 

SubLattice: 

Let (𝐿, ∧, ∨) be a lattice and let 𝑆 ⊆ 𝐿 be a subset of L. Then (𝑆, ∧, ∨) is a 

sublattice of (𝐿, ∧, ∨) iff S is closed under both operation ∧ and ∨. 

∀𝑎, 𝑏 ∈ 𝑆 ⇒ 𝑎 ∧ 𝑏 ∈ 𝑆 and 𝑎 ∨ 𝑏 ∈ 𝑆 
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Lattice Homomorphism: 

Let (𝐿1, ∧, ∨) and (𝐿2, ∗, ⨁) be two given lattices. 

A mapping 𝑓: 𝐿1 → 𝐿2 is called Lattice homomorphism if ∀𝑎, 𝑏 ∈ 𝐿1 

 𝑓(𝑎 ∧ 𝑏) = 𝑓(𝑎) ∗ 𝑓(𝑏) 

 𝑓(𝑎 ∨ 𝑏) = 𝑓(𝑎)⨁𝑓(𝑏) 

A homomorphism which is also 1 – 1 is called an isomorphism. 

Bounded lattice:  

Let (𝐿, ∧, ∨) be a given Lattice. If it has both “0” element and “1” element then it 

is said to be bounded Lattice. It is denoted by  (𝐿, ∧, ∨, 0, 1) 

Complement: 

Let (𝐿, ∧, ∨, 0, 1) be given bounded lattices. Let "𝑎" be any element of L. We say 

that "𝑏" is complement of a, if 𝑎 ∧ 𝑏 = 0 and 𝑎 ∨ 𝑏 = 1 and "𝑏" is denoted by the 

symbol 𝑎′. i.e., (𝑏 = 𝑎′). Therefore 𝑎 ∧ 𝑎′ = 0 and 𝑎 ∨ 𝑎′ = 1. 

Note: An element may have no complement or may have more than 1 

complement. 

Example for a complement. 
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Complement of 𝑎 = 𝑎′ is b and c. 

Complement of 𝑏 = 𝑏′ is a and c. 

Complement of 𝑐 = 𝑐′ is a and b. 

In the example given below: 
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Complement of does not exist. 

Complement of b does not exist. 

Complement of c does not exist. 

Complemented Lattice: 

A bounded lattice (𝐿, ∧, ∨, 0, 1) is said to be a complemented lattice if every 

element of L has atleast one complement. 

Complete Lattice: 

A lattice (𝐿, ∧, ∨) is said to be complete lattice if every non empty subsets of L 

has both glb &lub. 

1. Prove that in a bounded distributive lattice, the complement of any element 

is unique. 

Proof: 

Let L be a bounded distributive lattice. 

Let 𝑏 and 𝑐 be complements of an element 𝑎 ∈ 𝐿. 

To prove 𝑏 =  𝑐 

Since 𝑏 and 𝑐 are complements of 𝑎 we have 

 𝑎 ∧ 𝑏 = 0, 𝑎 ∨ 𝑏 = 1, 𝑎 ∧ 𝑐 = 0, 𝑎 ∨ 𝑐 = 1 
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Now 𝑏 = 𝑏 ∧ 1 

            = 𝑏 ∧ (𝑎 ∨ 𝑐) 

            = (𝑏 ∧ 𝑎) ∨ (𝑏 ∧ 𝑐) 

            = (𝑎 ∧ 𝑏) ∨ (𝑏 ∧ 𝑐) 

            = 0 ∨ (𝑏 ∧ 𝑐) 

            = (𝑎 ∧ 𝑐) ∨ (𝑏 ∧ 𝑐) 

           = (𝑎 ∧ 𝑏) ∧ 𝑐 

          = 1 ∧ 𝑐   

          = 𝑐    

Hence the proof. 

2. Prove that every distributive lattice is modular. 

Proof: 

Let (𝐿, ≤) be a distributive lattice. 

Let 𝑎, 𝑏, 𝑐 ∈ 𝐿 such that 𝑎 ≤ 𝑐 

To prove that 𝑎 ≤ 𝑐 ⇒ 𝑎 ∨ (𝑏 ∧ 𝑐) = (𝑎 ∨ 𝑏) ∧ 𝑐 

Assume that 𝑎 ≤ 𝑐 
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To prove that 𝑎 ∨ (𝑏 ∧ 𝑐) = (𝑎 ∨ 𝑏) ∧ 𝑐 

When 𝑎 ≤ 𝑐 ⇒ 𝑎 ∨ 𝑐 = 𝑐 

Therefore 𝑎 ∨ (𝑏 ∧ 𝑐) = (𝑎 ∨ 𝑏) ∧ (𝑎 ∨ 𝑐) 

                                    = (𝑎 ∨ 𝑏) ∧ 𝑐 

Hence 𝑎 ∨ (𝑏 ∧ 𝑐) = (𝑎 ∨ 𝑏) ∧ 𝑐 

Hence the proof. 

3. Show that in a complemented distributive lattice, 𝒂 ≤ 𝒃 ⇔ 𝒂 ∗ 𝒃′ = 𝟎 ⇔

𝒂′⨁𝒃 = 𝟏 ⇔ 𝒃′ ≤ 𝒂′ (or) , 𝒂 ≤ 𝒃 ⇔ 𝒂 ∧ 𝒃′ = 𝟎 ⇔ 𝒂′ ∨ 𝒃 = 𝟏 ⇔ 𝒃′ ≤ 𝒂′  

Proof: 

To prove (𝒊)  ⇒ (𝒊𝒊) 

We assume that 𝑎 ≤ 𝑏 

To prove that 𝑎 ∧ 𝑏′ = 0 

We know that 𝑎 ≤ 𝑏 ⇒ 𝑎 ∧ 𝑏 = 𝑎 and 𝑎 ∨ 𝑏 = 𝑏 

We take 𝑎 ∨ 𝑏 = 𝑏 

 ⇒ (𝑎 ∨ 𝑏) ∧ 𝑏′ = 𝑏 ∧ 𝑏′ = 0 

 ⇒ (𝑎 ∧ 𝑏′) ∨ (𝑏 ∧ 𝑏′) = 0 
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 ⇒ (𝑎 ∧ 𝑏′) ∨ 0 = 0 

 ⇒ (𝑎 ∧ 𝑏′) = 0 

Hence (𝑖)  ⇒ (𝑖𝑖) 

To prove (𝒊𝒊)  ⇒ (𝒊𝒊𝒊) 

We assume that 𝑎 ∧ 𝑏′ = 0 

To prove that 𝑎′ ∨ 𝑏 = 1 

Taking complement on both sides 

 ⇒ (𝑎 ∧ 𝑏′)′ = 0′ 

 ⇒ 𝑎′ ∨ 𝑏 = 1 

Therefore 𝑎 ∧ 𝑏′ = 0 ⇒ 𝑎′ ∨ 𝑏 = 1 

Hence (𝑖𝑖)  ⇒ (𝑖𝑖𝑖) 

To prove (𝒊𝒊𝒊)  ⇒ (𝒊𝒗) 

Assume that 𝑎′ ∨ 𝑏 = 1 

To prove that 𝑏′ ≤ 𝑎′ 

Now 𝑎′ ∨ 𝑏 = 1 

 ⇒ (𝑎′ ∨ 𝑏) ∧ 𝑏′ = 1 ⋅ 𝑏′ 
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 ⇒ (𝑎′ ∨ 𝑏) ∧ 𝑏′ = 𝑏′ 

 ⇒ (𝑎′ ∧ 𝑏′) ∧ (𝑏 ∧ 𝑏′) = 𝑏′ 

 ⇒ (𝑎′ ∧ 𝑏′) ∨ 0 = 𝑏′ 

 ⇒ (𝑎′ ∧ 𝑏′) = 𝑏′ 

 ⇒ (𝑏′ ∧ 𝑎′) = 𝑏′  by Commutative law 

Therefore 𝑎′ ∨ 𝑏 = 1 ⇒ 𝑏′ ≤ 𝑎′ 

Hence (𝑖𝑖𝑖)  ⇒ (𝑖𝑣) 

To prove (𝒊𝒗)  ⇒ (𝒊) 

Assume that 𝑏′ ≤ 𝑎′ 

To prove that 𝑎 ≤ 𝑏 

We have (𝑏′ ∧ 𝑎′) = 𝑏′ 

Taking complement on both sides 

 ⇒ (𝑏′ ∧ 𝑎′)′ = (𝑏′)′ 

 ⇒ 𝑏 ∨ 𝑎 = 𝑏 

Therefore 𝑎 ∨ 𝑏 = 𝑏 ⇒ 𝑎 ≤ 𝑏 

Hence (𝑖𝑣)  ⇒ (𝑖) 
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Hence 𝑎 ≤ 𝑏 ⇔ 𝑎 ∧ 𝑏′ = 0 ⇔ 𝑎′ ∨ 𝑏 = 1 ⇔ 𝑏′ ≤ 𝑎′ 

Hence the proof. 

4. State and prove DeMorgan’s law of lattice. 

(OR) 

Let (𝑳, ∧, ∨, 𝟎, 𝟏) is a complemented lattice, then prove that 

1. (𝒂 ∧ 𝒃)′ = 𝒂′ ∨ 𝒃′ 

2. (𝒂 ∨ 𝒃)′ = 𝒂′ ∧ 𝒃′ 

Proof: 

1. Claim: (𝒂 ∧ 𝒃)′ = 𝒂′ ∨ 𝒃′ 

To prove the above, it is enough to prove that  

(i)  (𝑎 ∧ 𝑏) ∧ (𝑎′ ∨ 𝑏′) = 0 

(ii)  (𝑎 ∧ 𝑏) ∨ (𝑎′ ∨ 𝑏′) = 1 

(i) Let (𝑎 ∧ 𝑏) ∧ (𝑎′ ∨ 𝑏′) 

 ⇒ ((𝑎 ∧ 𝑏) ∧ 𝑎′) ∨ ((𝑎 ∧ 𝑏) ∧ 𝑏′)          (Distributive law) 

 ⇒ (𝑎 ∧ 𝑏 ∧ 𝑎′) ∨ (𝑎 ∧ 𝑏 ∧ 𝑏′)                   (Associative law) 

 ⇒ (0 ∧ 𝑏) ∨ (𝑎 ∧ 0)                                  (𝑏 ∧ 𝑏′ = 0) 
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 ⇒ 0 ∨ 0                                                    (𝑎 ∧ 0 = 0)     

Hence (𝑎 ∧ 𝑏) ∧ (𝑎′ ∨ 𝑏′) = 0            . . . (1) 

(ii) Let (𝑎 ∧ 𝑏) ∧ (𝑎′ ∨ 𝑏′) 

 ⇒ (𝑎 ∨ (𝑎′ ∨ 𝑏′)) ∧ (𝑏 ∨ (𝑎′ ∨ 𝑏′))          (Distributive law) 

 ⇒ (𝑎 ∨ 𝑏 ∨ 𝑎′) ∧ (𝑎 ∨ 𝑏 ∨ 𝑏′)                   (Associative law) 

 ⇒ (1 ∨ 𝑏) ∧ (𝑎 ∨ 1)                                  (𝑏 ∨ 𝑏′ = 1) 

 ⇒ 1 ∧ 1 = 1                                               (𝑎 ∧ 0 = 0)     

Hence (𝑎 ∧ 𝑏) ∧ (𝑎′ ∨ 𝑏′) = 1            . . . (2) 

From (1) and (2) we have, (𝑎 ∧ 𝑏)′ = 𝑎′ ∨ 𝑏′ 

2. Claim: (𝒂 ∨ 𝒃)′ = 𝒂′ ∧ 𝒃′ 

To prove the above, it is enough to prove that  

(i)  (𝑎 ∨ 𝑏) ∧ (𝑎′ ∧ 𝑏′) = 0 

(ii)  (𝑎 ∨ 𝑏) ∨ (𝑎′ ∧ 𝑏′) = 1 

(i) Let (𝑎 ∨ 𝑏) ∧ (𝑎′ ∧ 𝑏′) 

 ⇒ (𝑎 ∧ (𝑎′ ∧ 𝑏′)) ∨ (𝑏 ∧ (𝑎′ ∧ 𝑏′))          (Distributive law) 

 ⇒ (𝑎 ∧ 𝑎′ ∧ 𝑏′) ∨ (𝑏 ∧ 𝑏′ ∧ 𝑎′)                   (Associative law) 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

MA8351 DISCRETE MATHEMATICS 

 ⇒ (0 ∧ 𝑏′) ∨ (0 ∧ 𝑎′)                                  (𝑏 ∧ 𝑏′ = 0) 

 ⇒ 0 ∨ 0                                                    (𝑎 ∧ 0 = 0)     

Hence (𝑎 ∨ 𝑏) ∧ (𝑎′ ∧ 𝑏′) = 0            . . . (3) 

(ii) Let (𝑎 ∨ 𝑏) ∨ (𝑎′ ∧ 𝑏′) 

 ⇒ ((𝑎 ∨ 𝑏) ∨ 𝑎′) ∧ ((𝑎 ∨ 𝑏) ∨ 𝑏′)          (Distributive law) 

 ⇒ (𝑎 ∨ 𝑏 ∨ 𝑎′) ∧ (𝑎 ∨ 𝑏 ∨ 𝑏′)                   (Associative law) 

 ⇒ (1 ∨ 𝑏) ∧ (𝑎 ∨ 1)                                  (𝑏 ∨ 𝑏′ = 0) 

 ⇒ 1 ∧ 1 = 1                                                    (Idempotent law)  

Hence (𝑎 ∨ 𝑏) ∨ (𝑎′ ∧ 𝑏′) = 1           . . . (4) 

From (3) and (4) we have, (𝑎 ∨ 𝑏)′ = 𝑎′ ∧ 𝑏′ 


