COMPUTATION OF DFT USING FFT ALGORITHM

FAST FOURIER TRANSFORM (FFT)

The Fast Fourier transform is a method for computing the discrete Fourier transform with reduced number of calculations. The Computational efficiency is achieved if we adopt a divide and conquer approach. This approach is based on the decomposition of an N point DFT into successively smaller DFTs.

Radix-2 FFT

In an N -point sequence if N can be expressed as $\mathrm{N}=2^{\mathrm{m}}$ then the sequence can be dissipated into 2-point sequences. For each 2-point sequence, 2-point DFT can be computed. From the result of 2-point DFT the 4-point DFT can be calculated. This FFT algorithm is called radix-2 FFT.In computing N -point DFT requires ' m ' number of stages of computation $\mathrm{N}=2^{\mathrm{m}}$

Number of Calculations in N-point DFT:

$$
X(K)=\sum_{n=0}^{N-1} x(n) e^{\frac{-j 2 \pi k n}{N}}
$$

For $\mathrm{k}=0,1,2 \ldots \mathrm{~N}-1$
$X(k)=x(0) e^{0}+x(1) e^{\frac{-j 2 \pi k}{N}}+x(2) e^{\frac{-j 4 \pi k}{N}}+x(3) e^{\frac{-j 6 \pi k}{N}}+\ldots \ldots+x(N-1) e^{\frac{-j 2(N-1) \pi k}{N}}$
From the above equation we can say that
The numbers of calculations to calculate $X(k)$ for one values of k are,
N number of Complex multiplications and
N -1 number of Complex additions.
The $X(k)$ is a sequence consisting of N complex numbers.
Therefore, the number of calculations to calculate all the N complex numbers of the $\mathrm{X}(\mathrm{k})$ are,
$\mathrm{N} \times N=N^{2}$ number of complex multiplications and
$\mathrm{N} \times(N-1)=N(N-1)$ number of complex additions
Hence, in direct computations of N point DFT, the total numbers of complex additions are $\mathrm{N}(\mathrm{N}-1)$ and total number of complex multiplications are N^{2}.

Number of Calculations in Radix-2 FFT:

In radix $2 \mathrm{FFT}, \mathrm{N}=2^{\mathrm{m}}$ and so there will be m stages of computations, where $\mathrm{m}=\log _{2} \mathrm{~N}$, with each stage having $\mathrm{N} / 2$ butterflies.

The number of calculations in one butterflies are

1. Number of complex multiplications and
2. Number of complex additions.

There are N/2 butterflies in each stage.
Therefore, number of calculations in one stage is,
$\frac{N}{2} \times 1=\frac{N}{2}$ Complex multiplications
$\frac{N}{2} \times 2=N$ Complex additions .
The N-point DFT involves m stages of computations. Therefore, the number of calculations for m stages are,
$\mathrm{M} \times \frac{N}{2}=\log _{2} \mathrm{~N} \times \frac{N}{2}=\frac{N}{2} \log _{2} \mathrm{~N}$ complex multiplications and
$\mathrm{m} \times N=\log _{2} \mathrm{~N} \times N=N \log _{2} \mathrm{~N}$ complex additions

Phase or twiddle factor:

By the definition of DFT, the N point DFT is given by

$$
\mathrm{X}(\mathrm{k})=\sum_{n=0}^{N-1} x(n) e^{\frac{-j 2 \pi n k}{N}} \quad \text { for } \mathrm{k}=0,1,2,3 \ldots \ldots \ldots \ldots \mathrm{~N}-1
$$

To simplify the notation it is desirable to define the complex valued phase factor W_{N} which is an $\mathrm{N}^{\text {th }}$ root of unity as,

$$
\mathrm{W}_{\mathrm{N}}=e^{-j 2 \pi}
$$

The phase value of -2π of W can be multiplied by any integer and it is represented as prefix in W.For example multiplying -2π by k can be represented as W^{k}.

$$
\mathrm{e}^{-\mathrm{j} 2 \pi \mathrm{k}} \quad \quad \Rightarrow \mathrm{~W}^{\mathrm{k}}
$$

The phase value -2π of W can be divided by any integer and it is represented as suffix in W.For example dividing -2π by N can be represented as W_{N}.

$$
\begin{gathered}
e^{-j 2 \pi \div N}=e^{-j 2 \pi \times \frac{1}{N}} \Rightarrow \mathrm{~W}_{\mathrm{N}} \\
e^{\frac{-j 2 \pi n k}{N}}=\left(e^{-j 2 \pi}\right)^{\frac{n k}{N}}
\end{gathered}
$$

The equation of N point DFT using phase factor can be written as

$$
\mathrm{X}(\mathrm{k})=\sum_{n=0}^{N-1} x(n) \mathrm{W}_{\mathrm{N}}{ }^{\mathrm{kn}} ; \text { for } \mathrm{k}=0,1,2, \ldots \ldots . \mathrm{N}-1
$$

DECIMATION IN TIME (DIT) RADIX 2 FFT:

Decimation in Time (DIT) Radix 2 FFT algorithm converts the time domain N point sequence $x(n)$ to a frequency domain N-point sequence $X(k)$.In Decimation in Time algorithm the time domain sequence $\mathrm{x}(\mathrm{n})$ is decimated and smaller point DFT are performed. The results of smaller point DFTs are combined to get the result of N-point DFT.

In DIT radix -2 FFT the time domain sequence is decimated into 2-point sequences. For each 2-point sequence, 2 -point DFT can be computed. From the result of 2-point DFT the 4-point DFT can be calculated. From the result of 4-point DFT the 8 point DFT can be calculated. This process is continued until we get N point DFT.This FFT algorithm is called radix- 2 FFT.

In decimation in time algorithm the N point DFT can be realized from two numbers of $\mathrm{N} / 2$ point DFTs, The $\mathrm{N} / 2$ point DFT can be calculated from two numbers of N/4-point DFTs and so on.

Let $x(n)$ be N sample sequence, we can decimate $x(n)$ into two sequences of $N / 2$ samples. Let the two sequences be $f_{1}(n)$ and $f_{2}(n)$.Let $f_{1}(n)$ consists of even numbered samples of $x(n)$ and $f_{2}(n)$ consists of odd numbered samples of $x(n)$.
$\mathrm{f}_{1}(\mathrm{n})=\mathrm{x}(2 \mathrm{n})$ for $\mathrm{n}=0,1,2,3 \ldots \ldots \ldots \cdot \frac{N}{2}-1$
$\mathrm{f}_{2}(\mathrm{n})=\mathrm{x}(2 \mathrm{n}+1)$ for $\mathrm{n}=0,1,2,3 \ldots \ldots \ldots \ldots \frac{N}{2}-1$
Let $\mathrm{X}(\mathrm{k})=\mathrm{N}$-point DFT of $\mathrm{x}(\mathrm{n})$
$\mathrm{F}_{1}(\mathrm{k})=\mathrm{N} / 2$ point DFT of $\mathrm{f}_{1}(\mathrm{n})$
$\mathrm{F}_{2}(\mathrm{k})=\mathrm{N} / 2$ point DFT of $\mathrm{f}_{2}(\mathrm{n})$
By definition of DFT the $N / 2$ point DFT of $f_{1}(n)$ and $f_{2}(n)$ are given by

$$
\begin{aligned}
& \mathrm{F}_{1}(\mathrm{k})=\sum_{n=0}^{\frac{N}{2}-1} f_{1}(n) W_{N / 2}^{k n} \\
& \mathrm{~F}_{2}(\mathrm{k})=\sum_{n=0}^{\frac{N}{2}-1} f_{2}(n) W_{N / 2}^{k n}
\end{aligned}
$$

Now-point DFT X (k), in terms of N/2 point DFTs $F_{1}(k)$ and $F_{2}(k)$ is given by

$$
\begin{equation*}
\mathrm{X}(\mathrm{k})=\mathrm{F}_{1}(\mathrm{k})+\mathrm{W}_{\mathrm{N}}^{\mathrm{k}} \mathrm{~F}_{2}(\mathrm{k}), \text { where, } \mathrm{k}=0,1,2, \ldots \tag{N-1}
\end{equation*}
$$

Having performed the decimation in time once, we can repeat the process for each of the sequences $f_{1}(n)$ and $f_{2}(n)$.Thus $f_{1}(n)$ would result in the two $N / 4$ point sequences and $f_{2}(n)$ would result in another two $N / 4$ point sequences.

Let the decimated $\mathrm{N} / 4$ point sequences of $\mathrm{f}_{1}(\mathrm{n})$ be $\mathrm{V}_{11}(\mathrm{n})$ and $\mathrm{V}_{12}(\mathrm{n})$.
$\mathrm{V}_{11}(\mathrm{n})=\mathrm{f}_{1}(2 \mathrm{n})$; for $\mathrm{n}=0,1,2, \ldots . . \frac{N}{4}-1$
$\mathrm{V}_{12}(\mathrm{n})=\mathrm{f}_{1}(2 \mathrm{n}+1)$; for $\mathrm{n}=0,1,2, \ldots \ldots . \frac{N}{4}-1$
Let the decimated $N / 4$ point sequences of $f_{2}(n)$ be $V_{21}(n)$ and $V_{22}(n)$.
$\mathrm{V}_{21}(\mathrm{n})=\mathrm{f}_{1}(2 \mathrm{n}) ;$ for $\mathrm{n}=0,1,2, \ldots \ldots \frac{N}{4}-1$
$\mathrm{V}_{22}(\mathrm{n})=\mathrm{f}_{1}(2 \mathrm{n}+1)$; for $\mathrm{n}=0,1,2, \ldots \ldots \cdot \frac{N}{4}-1$
Let $\mathrm{V}_{11}(\mathrm{k})=\mathrm{N} / 4$ point DFT of $\mathrm{V}_{11}(\mathrm{n})$;
$\mathrm{V}_{12}(\mathrm{k})=\mathrm{N} / 4$ point DFT of $\mathrm{V}_{12}(\mathrm{n})$
$\mathrm{V}_{21}(\mathrm{k})=\mathrm{N} / 4$ point DFT of $\mathrm{V}_{21}(\mathrm{n})$
$\mathrm{V}_{22}(\mathrm{k})=\mathrm{N} / 4$ point DFT of $\mathrm{V}_{22}(\mathrm{n})$
Then like earlier analysis we can show that,

$$
\begin{aligned}
& \mathrm{F}_{1}(\mathrm{k})=\mathrm{V}_{11}(\mathrm{k})+\mathrm{W}^{\mathrm{k}} \mathrm{~N}_{\mathrm{N} / 2} \mathrm{~V}_{12}(\mathrm{k}) ; \text { for } \mathrm{k}=0,1,2,3, \ldots \ldots \ldots \ldots \ldots \cdot \frac{N}{2}-1 \\
& \mathrm{~F}_{2}(\mathrm{k})=\mathrm{V}_{21}(\mathrm{k})+\mathrm{W}^{\mathrm{k}} \mathrm{~N}_{\mathrm{N} / 2} \mathrm{~V}_{22}(\mathrm{k}) ; \text { for } \mathrm{k}=0,1,2,3, \ldots \ldots \ldots \ldots \ldots \ldots \frac{N}{2}-1
\end{aligned}
$$

Hence the $\mathrm{N} / 2$ point DFTs are obtained from the results of $\mathrm{N} / 4$ point DFTs.
The decimation of the data sequence can be repeated again and again until the resulting sequences are reduced to 2 -point sequences.

Flow graph for 8 point DFT using radix 2 DIT FFT

Fig.Basic Butterfly computation

In each computation two complex numbers " a " and " b " are considered. The complex number " b " is multiplied by a phase factor " $W_{N}{ }^{k}$ "The product "b $W_{N}{ }^{k}$ " is
added to complex number " a " to form new complex number " A ". The product " $b W_{N}$ " is subtracted from complex number "a" to form new complex number" B ".

The input sequence is 8 point sequence.Therefore, $N=8=2^{3}=r^{m}$. Here $r=2$ and $m=3$. The sequence $x(n)$ is arranged in bit reversed order and then decimated into two sample sequences.

Fig.Bit reversed order

Fig. Three stages in the computation of an $N=8$ point

Fig. Eight point Decimation In Time-FFT

DECIMATION IN FREQUENCY (DIF) RADIX 2 FFT:

In Radix-2 decimation-in-frequency (DIF) FFT algorithm, original sequence $s(n)$ is decomposed into two subsequences as first half and second half of a sequence. There is no need of reordering (shuffling) the original sequence as in Radix-2 decimation-intime (DIT) FFT algorithm.

In this algorithm the N -point time domain sequence is converted into two numbers of $\mathrm{N} / 2$ sequences. Then each $\mathrm{N} / 2$ point sequence is converted into two numbers of $\mathrm{N} / 4$ point sequences. Thus we get four numbers of $\mathrm{N} / 4$ point sequences. This process is continued until we get N/2 numbers of 2-point sequences.

It can be shown that the N-point DFT of $x(n)$ can be realized from two numbers of $\mathrm{N} / 2$ point DFTs. The $\mathrm{N} / 2$ point DFTs can be realized from two numbers of $\mathrm{N} / 4$ point DFTs and so on. The decimation is continued up to 2-point DFTs.

Flow graph for 8 point DFT using Radix-2 DIF FFT

Fig .Basic Butterfly Computation

In each computation two complex numbers "a" and "b" are considered.
The sum of the two complex numbers is computed which forms a new complex number "A".

Then subtract complex number "b" from "a" to get the term "a-b". The difference term "a-b"is multiplied with the phase factor " W_{N} " " to form a new complex number "B".

Let $\mathrm{x}(\mathrm{n})$ and $\mathrm{X}(\mathrm{k})$ be N -point DFT pair.

Let $\mathrm{G}_{1}(\mathrm{k})$ and $\mathrm{G}_{2}(\mathrm{k})$ be two numbers of $\mathrm{N} / 2$ point sequences obtained by the decimation of $\mathrm{X}(\mathrm{k})$.

Let $G_{1}(k)$ be $N / 2$ point DFT of $g_{1}(n)$ and $G_{2}(k)$ be N/2 point DFT of $g_{2}(n)$.
Now, the N point DFT $\mathrm{X}(\mathrm{k})$ can be obtained from the two numbers of $\mathrm{N} / 2$ point DFTs of $\mathrm{G}_{1}(\mathrm{k})$ and $\mathrm{G}_{2}(\mathrm{k})$ as shown below.

Fig. $\mathbf{N}=\mathbf{8}$ point decimation in frequency FFT algorithm.
In the next stage of decimation the $N / 2$ point frequency domain sequence $G_{1}(k)$ is decimated into two numbers of $N / 4$ point sequences $D_{11}(k)$ and $D_{12}(k)$, and $G_{2}(k)$ is decimated into two numbers of N/4 point sequences $D_{21}(k)$ and $D_{22}(k)$.

Let $D_{11}(k)$ and $D_{12}(k)$ be two numbers of $N / 4$ point sequences obtained by the decimation of $\mathrm{G}_{1}(\mathrm{k})$.

Let $\mathrm{D}_{11}(\mathrm{k})$ be $\mathrm{N} / 4$ point DFT of $\mathrm{d}_{11}(\mathrm{n})$, and $\mathrm{D}_{12}(\mathrm{k})$ be $\mathrm{N} / 4$ point DFT of $\mathrm{d}_{12}(\mathrm{n})$.

Let $\mathrm{D}_{21}(\mathrm{k})$ and $\mathrm{D}_{22}(\mathrm{k})$ be two numbers of $\mathrm{N} / 4$ point sequences obtained by the decimation of $\mathrm{G}_{2}(\mathrm{k})$.

Let $\mathrm{D}_{21}(\mathrm{k})$ be $\mathrm{N} / 4$ point DFT of $\mathrm{d}_{21}(\mathrm{n})$ and $\mathrm{D}_{22}(\mathrm{k})$ be $\mathrm{N} / 4$ point DFT of $\mathrm{d}_{22}(\mathrm{n})$.
Now, N/2 point DFTs can be obtained from two numbers of N/4 point DFTs as shown below.

$$
\begin{aligned}
& \left.\mathrm{G}_{1}(\mathrm{k})\right|_{\mathrm{k}=\text { even }}=\mathrm{D}_{11}(\mathrm{k}) \\
& \left.\mathrm{G}_{1}(\mathrm{k})\right|_{\mathrm{k}=\text { odd }}=\mathrm{D}_{12}(\mathrm{k}) \\
& \left.\mathrm{G}_{2}(\mathrm{k})\right|_{\mathrm{k}=\text { even }}=\mathrm{D}_{21}(\mathrm{k}) \\
& \left.\mathrm{G}_{2}(\mathrm{k})\right|_{\mathrm{k}=\text { odd }}=\mathrm{D}_{22}(\mathrm{k})
\end{aligned}
$$

The decimation of the frequency domain sequence can be continued until the resulting sequences are reduced to 2 -point sequences. The entire process of decimation involves, m stages of decimation where $\mathrm{m}=\log _{2} \mathrm{~N}$. The computation of the N -point DFT via the decimation in frequency FFT algorithm requires ($\mathrm{N} / 2$) $\log _{2} \mathrm{~N}$ Complex multiplications and $\mathrm{Nlog}_{2} \mathrm{~N}$ complex additions.
1.Compute an 8 point DFT of the sequence using DIT and DIF-FFT algorithm. $x(n)=(1,2,3,2,1,0)$.
\uparrow
$\therefore x(n)=\{3,2,1,0,0,0,1,2\}$.

Fig.
$X(k)=\{9,5.828,1,0.172,1,0.172,1,5.828]$.
2. Find the DFT of the sequence $x(n)=(2,2,2,2,1,1,1,1)$ using DIT FFT.

3. Compute the $\mathbf{8 - P o i n t ~ D F T ~ o f ~ t h e ~ s e q u e n c e ~} x(n)=\{1 / 2,1 / 2,1 / 2,1 / 2,0,0,0,0\}$ by using the inplace radix-2 DIT FFT algorithm

$X(k)=\{2,0.5-j 1.207,0,0.5-j 0.207,0,0.5+j 0.207,0,0.5+j 1.207\}$

4. Compute IDFT of the sequence

$\mathrm{X}(\mathrm{k})=\{7,-0.707-\mathrm{j} 0.707,-\mathrm{j}, 0.707-\mathrm{j} 0.707,1,0.707+\mathrm{j} 0.707, \mathrm{j},-0.707+\mathrm{j} 0.707\}$ using DIT and DIF algorithms.

Ans: $x \cdot(n)=\{1,1,1,1,1,1,1,0\}$
5.Determine the 8-point DFT using Decimation in Time FFT .

$$
x(n)=\{1,2,3,4,4,3,2,1\}
$$

$$
\begin{array}{ll}
\omega_{8}^{0}=1 ; & \omega_{8}^{1}=\left(e^{-j 2 \pi / 8}\right)^{1}=0.707-j 0.707 \\
\omega_{8}^{2}=-j ; & \omega_{8}^{3}=-0.707-j 0.707
\end{array}
$$

$\therefore X(k)=\{20,-5.828-j 2.414,0,-0.172-j 0.414,0$,

$$
-0.172+j 0.414,0,-5.828+j 2.414\}
$$

6. Determine the 8-point DFT using Radix- 2 DIF-FFT algorithm.

$$
x(n)=\{0,1,2,3,4,5,6,7\}
$$

$$
\begin{aligned}
\mathrm{X}(\mathrm{k})= & \{28,-4+\mathrm{j} 9.656,-4+4 \mathrm{j},-4+\mathrm{j} 1.656,-4,-4-\mathrm{j} 1.656,-4 \\
& -4 \mathrm{j},-4-\mathrm{j} 9.656\}
\end{aligned}
$$

7.Compute the FFT of the of the sequence $x(n)=n^{2}+1$ for $0 \leq n \leq N-1$, where $N=8$ using DIT algorithm.

