

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

RECOVERY & CONSENSUS

CHECK POINTING AND ROLLBACK RECOVERY: INTRODUCTION

 Rollback recovery protocols restore the system back to a consistent state after a failure,

 It achieves fault tolerance by periodically saving the state of a process during the failure-

free execution

 It treats a distributed system application as a collection of processes that communicate

over a network

Checkpoints

The saved state is called a checkpoint, and the procedure of restarting from a previously check

pointed state is called rollback recovery. A checkpoint can be saved on either the stable storage

or the volatile storage

Why is rollback recovery of distributed systems complicated?

Messages induce inter-process dependencies during failure-free operation

Rollback propagation

The dependencies among messages may force some of the processes that did not fail to roll

back.This phenomenon of cascaded rollback is called the domino effect.

Uncoordinated check pointing

If each process takes its checkpoints independently, then the system cannot avoid the domino

effect – this scheme is called independent or uncoordinated checkpointing

Techniques that avoid domino effect

1. Coordinated checkpointing rollback recovery - Processes coordinate their checkpoints to

form a system-wide consistent state

2. Communication-induced checkpointing rollback recovery - Forces each process to take

checkpoints based on information piggybacked on the application.

3. Log-based rollback recovery - Combines checkpointing with logging of non-

deterministic events • relies on piecewise deterministic (PWD) assumption.

BACKGROUND AND DEFINITIONS

System model

 A distributed system consists of a fixed number of processes, P1, P2,…_ PN , which

communicate only through messages.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

 Processes cooperate to execute a distributed application and interact with the outside

world by receiving and sending input and output messages, respectively.

 Rollback-recovery protocols generally make assumptions about the reliability of the

inter-process communication.

 Some protocols assume that the communication uses first-in-first-out (FIFO) order, while

other protocols assume that the communication subsystem can lose, duplicate, or reorder

messages.

 Rollback-recovery protocols therefore must maintain information about the internal

interactions among processes and also the external interactions with the outside world.

 An example of a distributed system with three processes.

A local checkpoint

 All processes save their local states at certain instants of time

 A local check point is a snapshot of the state of the process at a given instance

 Assumption

– A process stores all local checkpoints on the stable storage

– A process is able to roll back to any of its existing local checkpoints

 𝐶𝑖,𝑘 – The kth local checkpoint at process 𝑃𝑖

 𝐶𝑖,0 – A process 𝑃𝑖 takes a checkpoint 𝐶𝑖,0 before it starts execution

Consistent states

 A global state of a distributed system is a collection of the individual states of all

participating processes and the states of the communication channels

 Consistent global state

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

– a global state that may occur during a failure-free execution of distribution of

distributed computation

 – if a process‟s state reflects a message receipt, then the state of the

corresponding sender must reflect the sending of the message

 A global checkpoint is a set of local checkpoints, one from each process

 A consistent global checkpoint is a global checkpoint such that no message is sent by a

process after taking its local point that is received by another process before taking its

checkpoint.

 For instance, Figure shows two examples of global states.

 The state in fig (a) is consistent and the state in Figure (b) is inconsistent.

 Note that the consistent state in Figure (a) shows message m1 to have been sent but not

yet received, but that is alright.

 The state in Figure (a) is consistent because it represents a situation in which every

message that has been received, there is a corresponding message send event.

 The state in Figure (b) is inconsistent because process P2 is shown to have received m2

but the state of process P1 does not reflect having sent it.

 Such a state is impossible in any failure-free, correct computation. Inconsistent states

occur because of failures.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

Interactions with outside world

A distributed system often interacts with the outside world to receive input data or deliver

the outcome of a computation. If a failure occurs, the outside world cannot be expected to roll

back. For example, a printer cannot roll back the effects of printing a character

Outside World Process (OWP)

 It is a special process that interacts with the rest of the system through message passing.

 It is therefore necessary that the outside world see a consistent behavior of the system

despite failures.

 Thus, before sending output to the OWP, the system must ensure that the state from

which the output is sent will be recovered despite any future failure.

A common approach is to save each input message on the stable storage before allowing the

application program to process it. An interaction with the outside world to deliver the outcome of

a computation is shown on the process-line by the symbol “||”.

Different types of Messages

1. In-transit message

 messages that have been sent but not yet received

2. Lost messages

 messages whose “send‟ is done but “receive‟ is undone due to rollback

3. Delayed messages

 messages whose “receive‟ is not recorded because the receiving process was

either down or the message arrived after rollback

4. Orphan messages

 messages with “receive‟ recorded but message “send‟ not recorded

 do not arise if processes roll back to a consistent global state

5. Duplicate messages

 arise due to message logging and replaying during process recovery

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

In-transit messages

In Figure , the global state {C1,8 , C2, 9 , C3,8, C4,8} shows that message m1 has been

sent but not yet received. We call such a message an in-transit message. Message m2 is also an

in-transit message.

Delayed messages

Messages whose receive is not recorded because the receiving process was either down

or the message arrived after the rollback of the receiving process, are called delayed messages.

For example, messages m2 and m5 in Figure are delayed messages.

Lost messages

Messages whose send is not undone but receive is undone due to rollbackare called

lostmessages. This type of messages occurs when the processrolls back to a checkpoint prior to

reception of the message while the senderdoes not rollback beyond the send operation of the

message. In Figure ,message m1 is a lost message.

Duplicate messages

 Duplicate messages arise due to message logging and replaying during process

recovery. For example, in Figure, message m4 was sent and received before the

rollback. However, due to the rollback of process P4 to C4,8 and process P3 to C3,8,

both send and receipt of message m4 are undone.

 When process P3 restarts from C3,8, it will resend message m4.

 Therefore, P4 should not replay message m4 from its log.

 If P4 replays message m4, then messagem4 is called a duplicate message.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

ISSUES IN FAILURE RECOVERY

In a failure recovery, we must not only restore the system to a consistent state, but also

appropriately handle messages that are left in an abnormal state due to the failure and recovery

The computation comprises of three processes Pi, Pj , and Pk, connected through a

communication network. The processes communicate solely by exchanging messages over fault-

free, FIFO communication channels.

Processes Pi, Pj , and Pk have taken checkpoints

 The rollback of process 𝑃𝑖 to checkpoint 𝐶𝑖,1 created an orphan message H

 Orphan message I is created due to the roll back of process 𝑃𝑗 to checkpoint 𝐶𝑗,1

 Messages C, D, E, and F are potentially problematic

– Message C: a delayed message

– Message D: a lost message since the send event for D is recorded in the

restored state for 𝑃𝑗, but the receive event has been undone at process 𝑃𝑖.

– Lost messages can be handled by having processes keep a message log of all

the sent messages

– Messages E, F: delayed orphan messages. After resuming execution from their

checkpoints, processes will generate both of these messages

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

CHECKPOINT-BASED RECOVERY

Checkpoint-based rollback-recovery techniques can be classified into three categories:

1. Uncoordinated check pointing

2. Coordinated check pointing

3. Communication-induced check pointing

1. Uncoordinated Check pointing

 Each process has autonomy in deciding when to take checkpoint

 Advantage: The lower runtime overhead during normal execution

 Disadvantages

1. Domino effect during a recovery

2. Recovery from a failure is slow because processes need to iterate to find a

consistent set of checkpoints

3. Each process maintains multiple checkpoints and periodically invoke a

garbage collection algorithm

4. Not suitable for application with frequent output commits

 The processes record the dependencies among their checkpoints caused by message

exchange during failure-free operation

 The following direct dependency tracking technique is commonly used in uncoordinated

check pointing.

Direct dependency tracking technique

 Assume each process 𝑃𝑖 starts its execution with an initial checkpoint 𝐶𝑖,0

 𝐼𝑖,𝑥 : checkpoint interval, interval between 𝐶𝑖,𝑥−1 and 𝐶𝑖,𝑥

 When 𝑃𝑗 receives a message m during 𝐼𝑗,𝑦 , it records the dependency from 𝐼𝑖,𝑥 to 𝐼𝑗,𝑦,

which is later saved onto stable storage when 𝑃𝑗 takes 𝐶𝑗,𝑦

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

 When a failure occurs, the recovering process initiates rollback by broadcasting a

dependency request message to collect all the dependency information maintained by

each process.

 When a process receives this message, it stops its execution and replies with the

dependency information saved on the stable storage as well as with the dependency

information, if any, which is associated with its current state.

 The initiator then calculates the recovery line based on the global dependency

information and broadcasts a rollback request message containing the recovery line.

 Upon receiving this message, a process whose current state belongs to the recovery line

simply resumes execution; otherwise, it rolls back to an earlier checkpoint as indicated by

the recovery line.

2. Coordinated Checkpointing

In coordinated check pointing, processes orchestrate their checkpointing activities so that all

local checkpoints form a consistent global state

Types

1. Blocking Checkpointing: After a process takes a local checkpoint, to prevent orphan

messages, it remains blocked until the entire checkpointing activity is complete

Disadvantages: The computation is blocked during the checkpointing

2. Non-blocking Checkpointing: The processes need not stop their execution while taking

checkpoints. A fundamental problem in coordinated checkpointing is to prevent a process

from receiving application messages that could make the checkpoint inconsistent.

Example (a) : Checkpoint inconsistency

 Message m is sent by 𝑃0 after receiving a checkpoint request from the checkpoint

coordinator

 Assume m reaches 𝑃1 before the checkpoint request

 This situation results in an inconsistent checkpoint since checkpoint 𝐶1,𝑥 shows the

receipt of message m from 𝑃0, while checkpoint 𝐶0,𝑥 does not show m being sent from

𝑃0

Example (b) : A solution with FIFO channels

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

 If channels are FIFO, this problem can be avoided by preceding the first post-checkpoint

message on each channel by a checkpoint request, forcing each process to take a

checkpoint before receiving the first post-checkpoint message

Impossibility of min-process non-blocking checkpointing

 A min-process, non-blocking checkpointing algorithm is one that forces only a minimum

number of processes to take a new checkpoint, and at the same time it does not force any

process to suspend its computation.

Algorithm

 The algorithm consists of two phases. During the first phase, the checkpoint initiator

identifies all processes with which it has communicated since the last checkpoint and

sends them a request.

 Upon receiving the request, each process in turn identifies all processes it has

communicated with since the last checkpoint and sends them a request, and so on, until

no more processes can be identified.

 During the second phase, all processes identified in the first phase take a checkpoint. The

result is a consistent checkpoint that involves only the participating processes.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

 In this protocol, after a process takes a checkpoint, it cannot send any message until the

second phase terminates successfully, although receiving a message after the checkpoint

has been taken is allowable.

3. Communication-induced Checkpointing

Communication-induced checkpointingis another way to avoid the domino effect, while allowing

processes to take some of their checkpoints independently. Processes may be forced to take

additional checkpoints

Two types of checkpoints

1. Autonomous checkpoints

2. Forced checkpoints

The checkpoints that a process takes independently are called local checkpoints, while those that

a process is forced to take are called forced checkpoints.

 Communication-induced checkpointing piggybacks protocol- related information on each

application message

 The receiver of each application message uses the piggybacked information to determine

if it has to take a forced checkpoint to advance the global recovery line

 The forced checkpoint must be taken before the application may process the contents of

the message

 In contrast with coordinated checkpointing, no special coordination messages are

exchanged

Two types of communication-induced checkpointing

1. Model-based checkpointing

2. Index-based checkpointing.

Model-based checkpointing

 Model-based checkpointing prevents patterns of communications and checkpoints

that could result in inconsistent states among the existing checkpoints.

 No control messages are exchanged among the processes during normal operation.

All information necessary to execute the protocol is piggybacked on application

messages

 There are several domino-effect-free checkpoint and communication model.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

 The MRS (mark, send, and receive) model of Russell avoids the domino effect by

ensuring that within every checkpoint interval all message receiving events precede

all message-sending events.

Index-based checkpointing.

 Index-based communication-induced checkpointing assigns monotonically increasing

indexes to checkpoints, such that the checkpoints having the same index at different

processes form a consistent state.

