
  
ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY 

 

     CS8603 DISTRIBUTED SYSTEMS  

COORDINATED CHECKPOINTING ALGORITHM (KOO-TOUEG) 

 

 Koo and Toueg coordinated check pointing and recovery technique takes a consistent set 

of checkpoints and avoids the domino effect and live lock problems during the recovery.  

• Includes 2 parts: the check pointing  algorithm and the recovery algorithm 

A. The Check pointing Algorithm 

The checkpoint algorithm makes the following assumptions about the distributed system:  

 Processes communicate by exchanging messages through communication channels. 

 Communication channels are FIFO.  

 Assume that end-to-end protocols (the sliding window protocol) exist to handle with 

message loss due to rollback recovery and communication failure.  

 Communication failures do not divide the network. 

 The checkpoint algorithm takes two kinds of checkpoints on the stable storage: 

Permanent and Tentative.  

 A permanent checkpoint is a local checkpoint at a process and is a part of a consistent 

global checkpoint.  

 A tentative checkpoint is a temporary checkpoint that is made a permanent checkpoint on 

the successful termination of the checkpoint algorithm.  

 

The algorithm consists of two phases. 

First Phase 

1. An initiating process Pi takes a tentative checkpoint and requests all other processes to 

take tentative checkpoints. Each process informs Pi whether it succeeded in taking a 

tentative checkpoint. 

2. A process says “no” to a request if it fails to take a tentative checkpoint 

3. If Pi learns that all the processes have successfully taken tentative checkpoints, Pi decides 

that all tentative checkpoints should be made permanent; otherwise, Pi decides that all the 

tentative checkpoints should be thrown-away. 

Second Phase 

1. Pi informs all the processes of the decision it reached at the end of the first phase.  

2. A process, on receiving the message from Pi will act accordingly.  



  
ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY 

 

     CS8603 DISTRIBUTED SYSTEMS  

3. Either all or none of the processes advance the checkpoint by taking permanent 

checkpoints.  

4. The algorithm requires that after a process has taken a tentative checkpoint, it cannot 

send messages related to the basic computation until it is informed of Pi’s decision.  

Correctness: for two reasons 

i. Either all or none of the processes take permanent checkpoint 

ii. No process sends message after taking permanent checkpoint 

An Optimization 

The above protocol may cause a process to take a checkpoint even when it is not necessary for 

consistency. Since taking a checkpoint is an expensive operation, we avoid taking checkpoints.  

B. The Rollback Recovery Algorithm 

The rollback recovery algorithm restores the system state to a consistent state after a failure. The 

rollback recovery algorithm assumes that a single process invokes the algorithm. It assumes that 

the checkpoint and the rollback recovery algorithms are not invoked concurrently. The rollback 

recovery algorithm has two phases. 

First Phase 

1. An initiating process Pi sends a message to all other processes to check if they all are 

willing to restart from their previous checkpoints.  

2. A process may reply “no” to a restart request due to any reason (e.g., it is already 

participating in a check pointing or a recovery process initiated by some other process).  

3. If Pi learns that all processes are willing to restart from their previous checkpoints, Pi 

decides that all processes should roll back to their previous checkpoints. Otherwise,  

4. Pi aborts the roll back attempt and it may attempt a recovery at a later time. 

Second Phase 

1. Pi propagates its decision to all the processes.  

2. On receiving Pi’s decision, a process acts accordingly.  

3. During the execution of the recovery algorithm, a process cannot send messages related 

to the underlying computation while it is waiting for Pi’s decision. 

Correctness: Resume from a consistent state 

Optimization: May not to recover all, since some of the  processes did not change anything 

 



  
ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY 

 

     CS8603 DISTRIBUTED SYSTEMS  

Optimization: May not to recover all, since some of the  processes did not change 

anything 

 

 

 

 

 

 

 

 

 

The above protocol, in the event of failure of process X, the above protocol will require 

processes X, Y, and Z to restart from checkpoints x2, y2, and z2, respectively. Process Z need 

not roll back because there has been no interaction between process Z and the other two 

processes since the last checkpoint at Z. 

 



 ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY  

   CS8603 DISTRIBUTED SYSTEMS  

ALGORITHM FOR ASYNCHRONOUS CHECKPOINTING AND RECOVERY  

 (JUANG-VENKATESAN) 

 This algorithm helps in recovery in asynchronous checkpointing. 

 The following are the assumptions made: 

 communication channels are reliable 

 delivery messages in FIFO order 

 infinite buffers 

 message transmission delay is arbitrary but finite 

 The underlying computation or application is event-driven: When process P is at states, 

receives message m, it processes the message; moves to state s’ and send messages out. 

So the triplet (s, m, msgs_sent) represents the state of P. 

 To facilitate recovery after a process failure and restore the system to a consistent 

state, two types of log storage are maintained: 

 Volatile log: It takes short time to access but lost if processor crash. 

The contents of volatile log are moved to stable log periodically. 

 Stable log: longer time to access but remained if crashed. 

Asynchronous checkpointing 

 After executing an event, a processor records a triplet (s, m, msg_sent) in its volatile 

storage. 

 s:state of the processor before the event 

 m: message 

 msgs_sent: set of messages that were sent by the processor during the 

event. 

 A local checkpoint at a processor consists of the record of an event occurring at the 

processor and it is taken without any synchronization with other processors. 

 Periodically, a processor independently saves the contents of the volatile log in the 

stable storage and clears the volatile log. 

 This operation is equivalent to taking a local checkpoint. 

Recovery Algorithm 

The data structures followed in the algorithm are: 

 



ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY  

CS8603 DISTRIBUTED SYSTEMS 

 

RCVDi j (CkPti )This represents the number of messages received by processor pi 

from processor pj,  from the beginning of the computation until the checkpoint CkPti. 

SENTi j (CkPti ) 

This represents the number of messages sent by processor pi to processor pj, from the  

beginning of the computation until the checkpoint CkPti. 

 The main idea of the algorithm is to find a set of consistent checkpoints, from the set 

of checkpoints. 

 This is done based on the number of messages sent and received. 

 Recovery may involve multiple iterations of roll backs by processors. 

 Whenever a processor rolls back, it is necessary for all other processors to find out if 

any message sent by the rolled back processor has become an orphan message. 

 The orphan messages are identified by comparing the number of messages sent to 

and received from neighboring processors. 

 When a processor restarts after a failure, it broadcasts a ROLLBACK message that it 

has failed. 

 The recovery algorithm at a processor is initiated when it restarts after a failure or 

when it learns of a failure at another processor. 

 Because of the broadcast of ROLLBACK messages, the recovery algorithm is 

initiated at all processors. 

Procedure RollBack_Recovery: processor pi executes the following: STEP (a) 

if processor pi is recovering after a failure then 

Ck Pti := latest event logged in the stable storage 

else 

Ck Pti := latest event that look place in pi {The latest event at pi can be either in stable or in 

volatile storage} 

end if 

STEP(b) 

for k=1 to N {N is the number of processors in the system} do  

                                                                                                                               for each neighboring processor pj do 

          compute SENTi j (Ck Pti)  

 

          send a ROLLBACK(i, SENTi j (Ck Pti)) message to pj 



 ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY  

   CS8603 DISTRIBUTED SYSTEMS  

            end for 

for every ROLLBACK(j,c) message received from a neighbor j do 

if RCVD i j (Ck Pti) > c {Implies the presence of orphan message} 

then 

find the latest event e such that RCVD i j (e) = c {Such an event e may be in 

the volatile storage or stable storage} 

Ck Pti := e 

               end if  

      end for 

     end for {for k} 

Fig : Algorithm for Asynchronous Check pointing and Recovery (Juang- Venkatesan) 

 The rollback starts at the failed processor and slowly diffuses into the entire 

system through ROLLBACK messages. 

 During the kth iteration (k != 1), a processor pi does the following: 

(i) based on the state CkPti it was rolled back in the (k − 1)th iteration, it 

computes SENTij (CkPti) for each neighbor pj and sends this value in a 

ROLLBACK message to that neighbor 

(ii) pi waits for and processes ROLLBACK messages that it receives from its 

neighbors in kth iteration and determines a new recovery point CkPt i for pi 

based on information in these messages. 

 

Fig : Asynchronous Checkpointing And Recovery 

At the end of each iteration, at least one processor will rollback to its final recovery point, 

unless the current recovery points are already consistent. 


	ALGORITHM FOR ASYNCHRONOUS CHECKPOINTING AND RECOVERY
	(JUANG-VENKATESAN)
	Asynchronous checkpointing
	Recovery Algorithm
	else
	end if
	end for
	then
	end if (1)
	end for (1)
	Fig : Algorithm for Asynchronous Check pointing and Recovery (Juang- Venkatesan)
	Fig : Asynchronous Checkpointing And Recovery

