
ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

Distributed Shared Memory is a resource management component of a distributed

operating system that implements the shared memory model in distributed systems, which

have no physically shared memory. The shared memory model provides a virtual address

space that is shared among all computers in a distributed system.

DISTRIBUTED SHARED MEMORY

 Abstraction and its advantages

 It is an abstraction provided to the programmer of a distributed system.

 It gives the impression of a single memory. Programmers access the data across the

network using only read and write primitives.

 Programmers do not have to deal with send and receive communication primitives

and the ensuing complexity of dealing explicitly with synchronization and

consistency in the message passing model.

 A part of each computer’s memory is earmarked for shared space, and the

remainder is private memory.

 To provide programmers with the illusion of a single shared address space, a

memory mapping management layer is required to manage the shared virtual

memory space.

Fig : Abstract view of Distributed Shared Memory Advantages of DSM

 Communication across the network is achieved by the read/write abstraction that

simplifies the task of programmers.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

 A single address space is provided, thereby providing the possibility of avoiding

data movement across multiple address spaces, and simplifying passing-by- reference

and passing complex data structures containing pointers.

 If a block of data needs to be moved, the system can exploit locality of reference to

reduce the communication overhead.

 DSM is economical than using dedicated multiprocessor systems, because it uses

simpler software interfaces and off-the-shelf hardware.

 There is no bottleneck presented by a single memory access bus.

 DSM effectively provides a large (virtual) main memory.

 DSM provides portability of programs written using DSM. This portability arises

due to a common DSM programming interface, which is independent of the

operating system and other low-level system characteristics

 When multiple processors wish to access the same data object, a decision about how

to handle concurrent accesses needs to be made. If concurrent access is permitted by

different processors to different replicas, the problem of replica consistency needs to

be addressed.

Challenges in implementing replica coherency in DSM systems

1. Programmers are aware of the availability of replica consistency models and from

coding their distributed applications according to the semantics of these models.

2. As DSM is implemented as asynchronous message passing, it faces the overhead of

asynchronous synchronization.

3. Since the control is given to memory management, the programmers lose the ability

to use their own message-passing solutions for accessing shared objects.

Issues in designing a DSM system:

 Determining the semantics to allow for concurrent access to shared objects.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

 Determining the best way to implement the semantics of concurrent access to

shared data either to use read or write replication.

 Selecting the locations for replication to optimize efficiency from the system’s

viewpoint.

 Determining the location of remote data that the application needs to access, if full

replication is not used.

 Reducing communication delays and the number of messages that are involved under the

covers while implementing the semantics of concurrent access to shared data.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

MEMORY CONSISTENCY MODELS

 These rules are essential to write a correct program.

 Memory coherence is the ability of the system to execute memory operations

correctly.

 The problem of ensuring memory coherence is identifying which of the interleaving

are correct, which of course requires a clear definition of correctness.

 The memory consistency model defines the set of allowable memory access

orderings.

 In DSM system, the programmers write their programs keeping in mind the

allowable interleaving permitted by that specific memory consistency model.

 A program written for one model may not work correctly on a DSM system that

enforces a different model.

 The model can thus be viewed as a contract between the DSM system and the

programmer using that system.

 The memory consistency model affects:

i) System implementation: hardware, OS, languages, compilers

ii) Programming correctness

iii) Performance

Strict consistency, atomic consistency, linearizability

 According to Von Neumann architecture/ uniprocessor machine, any Read

operation to a location should return the value or variable written by the most recent

Write to that location or a variable.

 The system built over the above principle is called strict or atomic consistency

model.

A memory consistency model is a set of rules which specify when a written value by one

thread can be read by another thread.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

 The features of the atomic consistency model area:

i) Common global time axis is implicitly available in a uniprocessor system

ii) The write operation is immediately visible to all processes

Fig : Invocations and responses in sequential system

The invocation and the response to each invocation can be viewed as being

atomic events. An execution sequence in global time is viewed as a sequence Seq of

such invocations and responses. The Seq must satisfy the following conditions:

 Liveness: Each invocation must have a corresponding response.

 Correctness: The projection of Seq on any processor i, denoted Seqi, must

be a sequence of alternating invocations and responses if pipelining is

disallowed.

A linearizable execution needs to generate an equivalent global order on the

events that is a permutation of Seq, satisfying the semantics of linearizability.

Atomic Consistency Model:

i) Any Read to a location is required to return the value written by the most

recent Write to that location in accordance with global time reference. For

non overlapping operations, with respect to the global time reference, the

specification is clear. For overlapping operations the following further

specifications are necessary.

ii) All operations appear to be executed atomically and sequentially.

iii) All processors see the same ordering of events, which is equivalent to the

global-time occurrence of non-overlapping events.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

 Linearizability is a guarantee about single operations on single objects.

 It provides a real- guarantee on the behavior of a set of single operations on a

single object.

Implementation of Linearizability

 Implementing linearizability is expensive because a global time scale needs

to be simulated.

 As all processors need to agree on a common order, the implementation

needs to use total order.

 For simplicity, the algorithm described here assumes full replication of each

data item at all the processors.

 This demands the total ordering to be combined with a broadcast.

 The memory manager software is placed between the application above it

and the total order broadcast layer below it.

(shared var)

int: x:

(1) When the memory manager receives a Read or Write from application:

Linearizable property:

A sequence Seq of invocations and responses is linearizable (LIN) if there is a

permutation Seq’ of adjacent pairs of corresponding (invoc, resp) events satisfying:

1. For every variable v, the projection of Seq’ on v, denoted Seqv’ , is such that

every Read (adjacent (invoc, resp) event pair) returns the most recent Write

(adjacent, (nvoc, resp) event pair) that immediately preceded it.

2. If the response op1(resp) of operation op1 occurred before the invocation

op2(invoc) of operation op2 in Seq, then op1 (adjacent (invoc, resp)event

pair) occurs before op2 (adjacent (invoc, resp) event pair) in Seq.

Linearizability requires that each operation appears to occur atomically at some point

between its invocation and completion. This point is called the linearization point.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

(1a) total_order_broadcast the Read or Write request to all processors; (1b)

await own request that was broadcast;

(1c) perform pending response to the application as follows

(1d) case Read: return value from local replica;

(1e) case Write: write to local replica and return ack to application.

(2) When the memory manager receives a total_order_broadcast(Write, x,

val) from network;

(2a) write val to local replica of x.

(3) When the memory manager receives a total_order_broadcast(Read, x)

from network;

(3a) no operation,

Fig : Implementing Linearizability

The algorithm in Fig. ensures total order broadcast such that all processors follow the

same order:

1. For two non-overlapping operations at different processors, the response

to the former operation precedes the invocation of the latter in global

time.

2. For two overlapping operations, the total order ensures a common view

by all processors.

Sequential Consistency

Sequential consistency requires that:

1. All instructions are executed in order.

2. Every write operation becomes instantaneously visible throughout the system.

The main motivation behind sequential consistency is that the atomic

consistency is very difficult to implement since the it is very difficult for a

system to synchronize to global clock. Sequential consistency is specified as

follows:

Sequential consistency requires that a shared memory multiprocessor appear to be a

multiprogramming uniprocessor system to any program running on it.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

 The result of any execution is the same as if all operations of the

processors were executed in some sequential order.

 The operations of each individual processor appear in this sequence in

the local program order.

Implementation of Sequential Consistency

All processors are required to see the same global order, but global time ordering

need not be preserved across processes. So it is sufficient to use total order broadcasts for

the Write operations only. In the simplified algorithm, no total order broadcast is

required for Read operations, because:

1. all consecutive operations by the same processor are ordered in the same

order because pipelining is not used.

2. Read operations by different processors are independent of each other and

need to be ordered only with respect to the Write operations in the execution.

(shared var)

int: x:

(1) When the memory manager receives a Read or Write from application:

(1a) case Read: return value from local replica;

(1b) case Write(x, val): total_order_broadcasti(Write(x, val)) to all processors

including itself.

(2) When the memory manager at Pi receives a total_order_broadcastsj(write, x,

val) from network;

Sequential Consistency:

A sequence Seq of invocation and response events is sequentially consistent if there is

a permutation Seq’ of adjacent pairs of corresponding (invoc, resp) events satisfying:

1. For every variable v, the projection of Seq’ on v, denoted Seqv’ , is such that

every Read (adjacent, (invoc,resp) event pair) returns the most recent Write

(adjacent, (invoc, resp) event pair) that immediately preceded it.

2. If the response op1(resp) of operation op1 at process Pi occurred before the

invocation op2(invoc) of operation op2 by process Pi in Seq, then op1

(adjacent (invoc, resp) event pair) occurs before op2 (adjacent (invoc,resp)

event pair) in Seq.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

(2a) Write val to local replica of x;

(2b) if i=j then return acknowledgement to application.

Fig : Sequential Consistency using Local Read algorithm

Local-read algorithm

 A Read operation completes atomically, whereas a Write operation does not.

 Between the invocation of a Write by Pi (line 1b) and its c knowledgement

(lines 2a, 2b), there may be multiple Write operations initiated by other

processors that take effect at Pi (line 2a).

 Thus, a Write issued locally has its completion locally delayed. Such an

algorithm is acceptable for Read intensive programs.

Local-write algorithm

 This does not delay acknowledgement of Writes.

 For Write intensive programs, it is desirable that a locally issued Write gets

acknowledged immediately even though the total order broadcast for the

Write, and the actual update for the Write may not go into effect by updating

the variable at the same time.

 The algorithm achieves this at the cost of delaying a Read operation by a

processor until all previously issued local Write operations by that same

processor have locally gone into effect.

 The variable counter is used to track the number of Write operations that have

been locally initiated but not completed at any time.

 A Read operation completes only if there are no prior locally initiated Write

operations that have not written to their variables.

 Else, a Read operation is delayed until after all previously initiated Write

operations have written to their local variables, which happens after the total

order broadcasts associated with the Write have delivered the broadcast message

locally.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

(shared var) int:x;

(1) When the memory manager at Pi receives a Read(x) from application:

(1a) if counter = 0 then

(1b) return x

(1c) else keep the Read pending

(2) When the memory manager at Pi receives a Write(x, val) from application:

(2a) count counter + 1;

(2b) total_order_broadcasti Write(x, val)

(2c) return acknowledgement to the application.

(3) When the memory manager at Pi receives a total_order_broadcastj Write(x,

val) from network:

(3a) write val to local replica of x;

(3b) if i=j then

(3c) counter counter – 1;

(3d) if (counter = 0 and any Reads are pending) then

(3e) perform pending responses for the Reads to the application.

Fig : Sequential Consistency using local write algorithm

Casual Consistency

 The causal consistency model represents a weakening of sequential

consistency in that it makes a distinction between events that are potentially

causally related and those that are not.

The causality relation is defined as follows:

 Local order: At a processor, the serial order of the events defines the local

causal order.

 Inter-process order: A Write operation causally precedes a Read

operation issued by another processor if the Read returns a value written by

the Write.

According to casual consistency model, only that Writes that are causally related must

be seen in that same order by all processors, whereas concurrent Writes may be seen by

different processors in different orders.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

 Transitive closure: The transitive closure of the above two relations

defines the (global) causal order.

Pipelined RAM (PRAM) or Processor Consistency

 In causal consistency, the concurrent writes be seen in a different order on

different machines, although causally-related ones must be seen in the same

order by all machines.

 PRAM consistency or Pipelined RAM states that Writes done by a single

process are received by all other processes in the order in which they were

issued, but writes from different processes may be seen in a different order by

different processes.

 This is a weaker form of consistency requires only that Write operations issued

by the same processor are seen by all other processors in the same order that

they were issued, but Write operations issued by different processors may be

seen in different orders by different processors.

 The local causality relation, as defined by the local order of Write operations,

needs to be seen by other processors. Hence, this form of consistency is

termed processor consistency.

 An equivalent name for this consistency model is pipelined RAM (PRAM),

to capture the behavior that all operations issued by any processor appear to the

other processors in a FIFO pipelined sequence.

Slow Memory

 The use of weakly consistent memories or slow memory in distributed shared

memory systems to combat unacceptable network delay and to allow such

systems to scale is proposed.

 Slow memory is presented as a memory that allows the effects of writes to

propagate slowly through the system, eliminating the need for costly

consistency maintenance protocols that limit concurrency.

 Slow memory processes a valuable locality property and supports a reduction

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

from traditional atomic memory. Thus slow memory is as expressive as atomic

memory.

Fig : Hierarchy of memory consistency models

Models based on synchronization instructions

Synchronization instructions are like run-time library. The synchronization

statements across the various processors must satisfy the consistency conditions;

other program statements between synchronization statements may be executed by

the different processors without any conditions.

i) Weak Consistency

The protocol is said to support weak consistency if:

 All accesses to synchronization variables are seen by all processes (or

nodes, processors) in the same order (sequentially) - these are

synchronization operations. Accesses to critical sections are seen

sequentially.

 All other accesses may be seen in different order on different processes (or

nodes, processors).

 The set of both read and write operations in between different

synchronization operations is the same in each process.

Drawbacks:

When a synchronization variable is accessed, the memory does not know

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

whether this is being done because the process is finished writing the shared

variables or about to begin reading them.

ii) Release Consistency

The drawbacks of weak consistency are overcome by:

1. Ensuring that all locally initiated Writes have been completed, i.e., propagated

to all other processes.

2. Ensuring that all Writes from other machines have been locally reflected

To differentiate the entering and leaving of CS, release consistency

provides acquire and release operations.

Acquire:

 Acquire accesses are used to tell the memory system that a critical region

is about to be entered.

 The actions for case 2 need to be performed to ensure that local replicas of

variables are made consistent with remote ones.

Release:

 This accesses say that a critical region has just been exited.

 Hence, the actions for case 1 need to be performed to ensure that

remote replicas of variables are made consistent with the local ones that

have been updated.

The Acquire and Release operations can be defined to apply to a subset of the

variables. The accesses themselves can be implemented either as ordinary operations on

special variables or as special operations. If the semantics of a CS is not associated with the

Acquire and Release operations, then the operations effectively provide for barrier

synchronization.

The barrier synchronization states that until all processes complete the previous

phase, none can enter the next phase.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

This is implemented through protected variables which follows the given rules:

 All previously initiated Acquire operations must complete successfully before a

process can access a protected shared variable.

 All accesses to a protected shared variable must complete before a Release operation

can be performed.

 The Acquire and Release operations effectively follow the PRAM consistency

model.

iii) Entry Consistency

 Entry consistency requires the programmer to use Acquire and Release at the

start and end of each CS, respectively.

 Entry consistency requires each ordinary shared variable to be associated with

some synchronization variable such as a lock or barrier.

 When an Acquire is performed on a synchronization variable, only access to

those ordinary shared variables that are guarded by that synchronization

variable is regulated.

The lazy release consistency model is relaxation of the release consistency model in

which rather than propagating the updated values throughout the system as soon as a

process leaves a critical region, the updated values are propagated to the rest of the

system only on demand, i.e., only when they are needed.

	Fig : Abstract view of Distributed Shared Memory Advantages of DSM
	Challenges in implementing replica coherency in DSM systems
	Issues in designing a DSM system:
	MEMORY CONSISTENCY MODELS
	Strict consistency, atomic consistency, linearizability
	Fig : Invocations and responses in sequential system
	Implementation of Linearizability
	Fig : Implementing Linearizability
	Sequential Consistency
	Implementation of Sequential Consistency
	Fig : Sequential Consistency using Local Read algorithm
	Local-read algorithm
	Local-write algorithm
	Fig : Sequential Consistency using local write algorithm
	Pipelined RAM (PRAM) or Processor Consistency
	Slow Memory
	Fig : Hierarchy of memory consistency models
	i) Weak Consistency
	Drawbacks:
	ii) Release Consistency
	Acquire:
	Release:
	iii) Entry Consistency

