
ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY 

 

  CS8603 DISTRIBUTED SYSTEMS 

Distributed Shared Memory is a resource management component of a distributed 

operating system that implements the shared memory model in distributed systems, which 

have no physically shared memory. The shared memory model provides a virtual address  

space that is shared among all computers in a distributed system. 

DISTRIBUTED SHARED MEMORY 

        Abstraction and its advantages 

 

 

 It is an abstraction provided to the programmer of a distributed system. 

 It gives the impression of a single memory. Programmers access the data across the 

network using only read and write primitives. 

 Programmers do not have to deal with send and receive communication primitives 

and the ensuing complexity of dealing explicitly with synchronization and 

consistency in the message passing model. 

 A part of each computer’s memory is earmarked for shared space, and the 

remainder is private memory. 

 To provide programmers with the illusion of a single shared address space, a 

memory mapping management layer is required to manage the shared virtual 

memory space. 

 

 
 

Fig : Abstract view of Distributed Shared Memory Advantages of DSM 

 Communication across the network is achieved by the read/write abstraction that 

simplifies the task of programmers. 
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 A single address space is provided, thereby providing the possibility of avoiding  

data movement across multiple address spaces, and simplifying passing-by- reference 

and passing complex data structures containing pointers. 

 If a block of data needs to be moved, the system can exploit locality of reference to 

reduce the communication overhead. 

 DSM is economical than using dedicated multiprocessor systems, because it uses 

simpler software interfaces and off-the-shelf hardware. 

 There is no bottleneck presented by a single memory access bus. 

 DSM effectively provides a large (virtual) main memory. 

 DSM provides portability of programs written using DSM. This portability arises 

due to a common DSM programming interface, which is independent of the 

operating system and other low-level system characteristics 

 When multiple processors wish to access the same data object, a decision about how 

to handle concurrent accesses needs to be made. If concurrent access is permitted by 

different processors to different replicas, the problem of replica consistency needs to 

be addressed. 

Challenges in implementing replica coherency in DSM systems 

 

1. Programmers are aware of the availability of replica consistency models and from 

coding their distributed applications according to the semantics of these models. 

2. As DSM is implemented as asynchronous message passing, it faces the overhead of 

asynchronous synchronization. 

3. Since the control is given to memory management, the programmers lose the ability 

to use their own message-passing solutions for accessing shared objects. 

Issues in designing a DSM system: 

 Determining the semantics to allow for concurrent access to shared objects. 
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 Determining the best way to implement the semantics of concurrent access to 

shared data either to use read or write replication. 

 Selecting the locations for replication to optimize efficiency from the system’s 

viewpoint. 

 Determining the location of remote data that the application needs to access, if full 

replication is not used. 

 Reducing communication delays and the number of messages that are involved under the 

covers while implementing the semantics of concurrent access to shared data. 
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MEMORY CONSISTENCY MODELS 
 

 

 These rules are essential to write a correct program. 

 Memory coherence is the ability of the system to execute memory operations 

correctly. 

 The problem of ensuring memory coherence is identifying which of the interleaving 

are correct, which of course requires a clear definition of correctness. 

 The memory consistency model defines the set of allowable memory access 

orderings. 

 In DSM system, the programmers write their programs keeping in mind the 

allowable interleaving permitted by that specific memory consistency model. 

 A program written for one model may not work correctly on a DSM system that 

enforces a different model. 

 The model can thus be viewed as a contract between the DSM system and the 

programmer using that system. 

 The memory consistency model affects: 

i) System implementation: hardware, OS, languages, compilers 

ii) Programming correctness 

iii) Performance 

Strict consistency, atomic consistency, linearizability 

 According to Von Neumann architecture/ uniprocessor machine, any Read 

operation to a location should return the value or variable written by the most recent 

Write to that location or a variable. 

 The system built over the above principle is called strict or atomic consistency 

model. 

A memory consistency model is a set of rules which specify when a written value by one 

thread can be read by another thread. 
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 The features of the atomic consistency model area: 

i) Common global time axis is implicitly available in a uniprocessor system 

ii) The write operation is immediately visible to all processes 

 

 

 

 

 

 

 

 

 

Fig : Invocations and responses in sequential system 

The invocation and the response to each invocation can be viewed as being 

atomic events. An execution sequence in global time is viewed as a sequence Seq of 

such invocations and responses. The Seq must satisfy the following conditions: 

 Liveness: Each invocation must have a corresponding response. 

 Correctness: The projection of Seq on any processor i, denoted Seqi, must 

be a sequence of alternating invocations and responses if pipelining is 

disallowed. 

A linearizable execution needs to generate an equivalent global order on the 

events that is a permutation of Seq, satisfying the semantics of linearizability. 

Atomic Consistency Model: 

i) Any Read to a location is required to return the value written by the most  

recent Write to that location in accordance with global time reference. For 

non overlapping operations, with respect to the global time reference, the  

specification is clear. For overlapping operations the following further 

specifications are necessary. 

ii) All operations appear to be executed atomically and sequentially. 

iii) All processors see the same ordering of events, which is equivalent to the  

global-time occurrence of non-overlapping events. 
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 Linearizability is a guarantee about single operations on single objects. 

 It provides a real- guarantee on the behavior of a set of single operations on a 

single object. 

 

 

Implementation of Linearizability 

 Implementing linearizability is expensive because a global time scale needs 

to be simulated. 

 As all processors need to agree on a common order, the implementation 

needs to use total order. 

 For simplicity, the algorithm described here assumes full replication of each 

data item at all the processors. 

 This demands the total ordering to be combined with a broadcast. 

 The memory manager software is placed between the application above it 

and the total order broadcast layer below it. 

(shared var) 

int: x: 

(1) When the memory manager receives a Read or Write from application: 

Linearizable property: 

A sequence  Seq  of  invocations  and  responses  is  linearizable  (LIN)  if  there  is  a 

permutation Seq’ of adjacent pairs of corresponding (invoc, resp) events satisfying: 

1. For every variable v, the projection of Seq’ on v, denoted Seqv’ , is such that 

every Read (adjacent (invoc, resp) event pair) returns the most recent Write 

(adjacent, (nvoc, resp) event pair) that immediately preceded it. 

2. If the response op1(resp) of operation op1 occurred before the invocation 

op2(invoc) of operation op2 in Seq, then op1 (adjacent (invoc, resp)event  

pair) occurs before op2 (adjacent (invoc, resp) event pair) in Seq. 

Linearizability requires that each operation appears to occur atomically at some point 

between its invocation and completion. This point is called the linearization point. 



ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY  

  CS8603 DISTRIBUTED SYSTEMS 

(1a) total_order_broadcast the Read or Write request to all processors; (1b) 

await own request that was broadcast; 

(1c) perform pending response to the application as follows 

(1d) case Read: return value from local replica; 

(1e) case Write: write to local replica and return ack to application. 

(2)  When the memory manager receives a total_order_broadcast(Write, x, 

val) from network; 

(2a) write val to local replica of x. 

(3) When the memory manager receives a total_order_broadcast(Read, x) 

from network; 

(3a) no operation, 

Fig : Implementing Linearizability 

The algorithm in Fig. ensures total order broadcast such that all processors follow the 

same order: 

1. For two non-overlapping operations at different processors, the response 

to the former operation precedes the invocation of the latter in global 

time. 

2.  For two overlapping operations, the total order ensures a common view 

by all processors. 

Sequential Consistency 

 
 

Sequential consistency requires that: 

1. All instructions are executed in order. 

2. Every write operation becomes instantaneously visible throughout the system. 

The main motivation behind sequential consistency is that the atomic 

consistency is very difficult to implement since the it is very difficult for a 

system to synchronize to global clock. Sequential consistency is specified as 

follows: 

Sequential consistency requires that a shared memory multiprocessor appear to be a 

multiprogramming uniprocessor system to any program running on it. 
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 The result of any execution is the same as if all operations of the 

processors were executed in some sequential order. 

 The operations of each individual processor appear in this sequence in   

the local program order. 

 

 
 

Implementation of Sequential Consistency 

All processors are required to see the same global order, but global time ordering 

need not be preserved across processes. So it is sufficient to use total order broadcasts for 

the Write operations only. In the simplified algorithm, no total order broadcast is 

required for Read operations, because: 

1. all consecutive operations by the same processor are ordered in the same 

order because pipelining is not used. 

2. Read operations by different processors are independent of each other and 

need to be ordered only with respect to the Write operations in the execution. 

(shared var) 

int: x: 

(1) When the memory manager receives a Read or Write from application: 

(1a) case Read: return value from local replica; 

(1b) case Write(x, val): total_order_broadcasti(Write(x, val)) to all processors 

including itself. 

(2) When the memory manager at Pi receives a total_order_broadcastsj(write, x, 

val) from network; 

Sequential Consistency: 

A sequence Seq of invocation and response events is sequentially consistent if there is 

a permutation Seq’ of adjacent pairs of corresponding (invoc, resp) events satisfying: 

1. For every variable v, the projection of Seq’ on v, denoted Seqv’ , is such that  

every Read (adjacent, (invoc,resp) event pair) returns the most recent Write 

(adjacent, (invoc, resp) event pair) that immediately preceded it. 

2. If the response op1(resp) of operation op1 at process Pi occurred before the 

invocation op2(invoc) of operation op2 by process Pi in Seq, then op1 

(adjacent (invoc, resp) event pair) occurs before op2 (adjacent (invoc,resp) 

event pair) in Seq. 
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(2a) Write val to local replica of x; 

(2b) if i=j then return acknowledgement to application. 

Fig : Sequential Consistency using Local Read algorithm  

Local-read algorithm 

 A Read operation completes atomically, whereas a Write operation does not. 

 Between the invocation of a Write by Pi (line 1b) and its c knowledgement 

(lines 2a, 2b), there may be multiple Write operations initiated by other 

processors that take effect at Pi (line 2a). 

 Thus, a Write issued locally has its completion locally delayed. Such an 

algorithm is acceptable for Read intensive programs. 

Local-write algorithm 

 This does not delay acknowledgement of Writes. 

  For Write intensive programs, it is desirable that a locally issued Write gets 

acknowledged immediately even though the total order broadcast for the 

Write, and the actual update for the Write may not go into effect by updating 

the variable at the same time. 

 The algorithm achieves this at the cost of delaying a Read operation by a 

processor until all previously issued local Write operations by that same 

processor have locally gone into effect. 

 The variable counter is used to track the number of Write operations that have 

been locally initiated but not completed at any time. 

 A Read operation completes only if there are no prior locally initiated Write 

operations that have not written to their variables. 

 Else, a Read operation is delayed until after all previously initiated Write 

operations have written to their local variables, which happens after the total 

order broadcasts associated with the Write have delivered the broadcast message 

locally. 
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(shared var) int:x; 

(1) When the memory manager at Pi receives a Read(x) from application: 

(1a) if counter = 0 then 

(1b) return x 

(1c) else keep the Read pending 

(2) When the memory manager at Pi receives a Write(x, val) from application: 

(2a) count  counter + 1; 

(2b) total_order_broadcasti Write(x, val) 

(2c) return acknowledgement to the application. 

(3) When the memory manager at Pi receives a total_order_broadcastj Write(x, 

val) from network: 

(3a) write val to local replica of x; 

(3b) if i=j then 

(3c) counter  counter – 1; 

(3d) if (counter = 0 and any Reads are pending) then 

(3e) perform pending responses for the Reads to the application. 

Fig : Sequential Consistency using local write algorithm 

Casual Consistency 

 The causal consistency model represents a weakening of sequential 

consistency in that it makes a distinction between events that are potentially 

causally related and those that are not. 

The causality relation is defined as follows: 

 Local order: At a processor, the serial order of the events defines the local 

causal order. 

 Inter-process order: A Write operation causally precedes a Read 

operation issued by another processor if the Read returns a value written by 

the Write. 

According to casual consistency model, only that Writes that are causally related must 

be seen in that same order by all processors, whereas concurrent Writes may be seen by 

different processors in different orders. 
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 Transitive closure: The transitive closure of the above two relations 

defines the (global) causal order. 

Pipelined RAM (PRAM) or Processor Consistency 

 In causal consistency, the concurrent writes be seen in a different order on 

different machines, although causally-related ones must be seen in the same 

order by all machines. 

 PRAM consistency or Pipelined RAM states that Writes done by a single 

process are received by all other processes in the order in which they were 

issued, but writes from different processes may be seen in a different order by 

different processes. 

 This is a weaker form of consistency requires only that Write operations issued 

by the same processor are seen by all other processors in the same order that 

they were issued, but Write operations issued by different processors may be 

seen in different orders by different processors. 

 The local causality relation, as defined by the local order of Write operations, 

needs to be seen by other processors. Hence, this form of consistency is 

termed processor consistency. 

 An equivalent name for this consistency model is pipelined RAM (PRAM), 

to capture the behavior that all operations issued by any processor appear to the 

other processors in a FIFO pipelined sequence. 

Slow Memory 

 The use of weakly consistent memories or slow memory in distributed shared  

memory systems to combat unacceptable network delay and to allow such 

systems to scale is proposed. 

 Slow memory is presented as a memory that allows the effects of writes to 

propagate slowly through the system, eliminating the need for costly 

consistency maintenance protocols that limit concurrency. 

 Slow memory processes a valuable locality property and supports a reduction 
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from traditional atomic memory. Thus slow memory is as expressive as atomic 

memory. 

 

Fig : Hierarchy of memory consistency models 

Models based on synchronization instructions 

Synchronization instructions are like run-time library. The synchronization 

statements across the various processors must satisfy the consistency conditions; 

other program statements between synchronization statements may be executed by 

the different processors without any conditions. 

i) Weak Consistency 

The protocol is said to support weak consistency if: 

 All accesses to synchronization variables are seen by all processes (or 

nodes, processors) in the same order (sequentially) - these are 

synchronization operations. Accesses to critical sections are seen 

sequentially. 

 All other accesses may be seen in different order on different processes (or 

nodes, processors). 

 The set of both read and write operations in between different 

synchronization operations is the same in each process. 

Drawbacks: 

When a synchronization variable is accessed, the memory does not know 
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whether this is being done because the process is finished writing the shared 

variables or about to begin reading them. 

ii) Release Consistency 

The drawbacks of weak consistency are overcome by: 

1. Ensuring that all locally initiated Writes have been completed, i.e., propagated 

to all other processes. 

2. Ensuring that all Writes from other machines have been locally reflected  

To differentiate the entering and leaving of CS, release consistency 

provides acquire and release operations. 

Acquire: 

 Acquire accesses are used to tell the memory system that a critical region 

is about to be entered. 

 The actions for case 2 need to be performed to ensure that local replicas of 

variables are made consistent with remote ones. 

Release: 

 This accesses say that a critical region has just been exited. 

 Hence, the actions for case 1 need to be performed to ensure that 

remote replicas of variables are made consistent with the local ones that 

have been updated. 

The Acquire and Release operations can be defined to apply to a subset of the 

variables. The accesses themselves can be implemented either as ordinary operations on 

special variables or as special operations. If the semantics of a CS is not associated with the 

Acquire and Release operations, then the operations effectively provide for barrier 

synchronization. 

 

The barrier synchronization states that until all processes complete the previous 

phase, none can enter the next phase. 
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This is implemented through protected variables which follows the given rules: 

 All previously initiated Acquire operations must complete successfully before a 

process can access a protected shared variable. 

 All accesses to a protected shared variable must complete before a Release operation 

can be performed. 

 The Acquire and Release operations effectively follow the PRAM consistency 

model. 

 

 

iii) Entry Consistency 

 Entry consistency requires the programmer to use Acquire and Release at the 

start and end of each CS, respectively. 

 Entry consistency requires each ordinary shared variable to be associated with 

some synchronization variable such as a lock or barrier. 

 When an Acquire is performed on a synchronization variable, only access to 

those ordinary shared variables that are guarded by that synchronization 

variable is regulated. 

The lazy release consistency model is relaxation of the release consistency model in  

which rather than propagating the updated values throughout the system as soon as a 

process leaves a critical region, the updated values are propagated to the rest of the  

system only on demand, i.e., only when they are needed. 
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