## Horn Antennas

Flared waveguides that produce a nearly uniform phase front larger than the waveguide itself. Constructed in a variety of shapes such as sectoral E-plane, sectoral H-plane, pyramidal, conical, etc.

## Horn Antennas - Application Areas

- **1.** Used as a feed element for large radio astronomy, satellite tracking and communication dishes.
- 2. A common element of phased arrays.

with a 10:1 bandwidth not being uncommon.

- 3. Used in the calibration, other high-gain antennas.
- 4. Used for making electromagnetic interference measurements

## **Rectangular Horn antenna:**

A rectangular horn antenna is as shown in figure 4.6. This is an extension of rectangular wave guide. TE10 mode is preferred for rectangular horns.



**Horn antennas** are very popular at UHF (300 MHz-3 GHz) and higher frequencies (Ihorn antennas operating as high as 140 GHz). Horn antennas often have a directional radiation pattern with a high antenna gain, which can range up to 25 dB in some cases, with 10-20 dB being typical. Horn antennas have a wide impedance bandwidth, implying that the input impedance is slowly varying over a wide frequency range (which also implies low values for S11 or VSWR). The bandwidth for practical horn antennas can be on the order of 20:1 (for instance, operating from 1 GHz-20 GHz),

The gain of horn antennas often increases (and the <u>beamwidth</u> decreases) as the frequency of operation is increased. This is because the size of the horn aperture is always measured in wavelengths; at higher frequencies the horn antenna is "electrically larger"; this is because a higher frequency has a smaller wavelength. Since the horn antenna has a fixed physical size (say a square aperture of 20 cm across, for instance), the aperture is more wavelengths across at higher frequencies. And, a recurring theme in antenna theory is that larger antennas (in terms of wavelengths in size) have higher directivities.

Table:

| Type of Aperture                                                 | Beam width, deg               |                             |
|------------------------------------------------------------------|-------------------------------|-----------------------------|
|                                                                  | Between First nulls           | Between Half power points   |
| Uniformly illuminated<br>rectangular aperture or linear<br>array | $\frac{115}{L_{\lambda}}$     | $\frac{51}{L_2}$            |
| Uniformly illuminated circular<br>aperture                       | $\frac{140}{D_2}$             | $\frac{58}{D_2}$            |
| Optimum E-plane rectangular<br>horn                              | $\frac{115}{a_{E1}}$          |                             |
| Optimum H-plane rectangular<br>horn                              | $\frac{172}{a_{_{H\lambda}}}$ | 67<br><i>a<sub>Hl</sub></i> |

Horn antennas are typically fed by a section of a waveguide, as shown in Figure 4. The waveguide itself is often fed with a short dipole, which is shown in red in Figure 4. A waveguide is simply a hollow, metal cavity (see the waveguide tutorial). Waveguides are used to guide electromagnetic energy from one place to another. The waveguide in Figure 4 is a rectangular waveguide of width *b* and height *a*, with b>a. The E-field distribution for the dominant mode is shown in the lower part of Figure 1.



Figure 4. Waveguide used as a feed to horn antennas.