
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

EC - 8552 COMPUTER ARCHITECTURE AND ORGANIZATION

HANDLING DATA HAZARDS & CONTROL HAZARDS

Hazards: Prevent the next instruction in the instruction stream from executing during its

designated clock cycle.

• Hazards reduce the performance from the ideal speedup gained by pipelining. 3 classes of

hazards:

• Structural hazards: arise from resource conflicts when the hardware cannot support all

possible combinations of instructions simultaneously in overlapped execution.

• Data hazards: arise when an instruction depends on the results of a previous instruction in a

way that is exposed by the overlapping of instructions in the pipeline.

• Control hazards: arise from the pipelining of branches and other instructions that change the

PC.

Performance of Pipelines with Stalls

• A stall causes the pipeline performance to degrade from the ideal performance. Speedup

from pipelining = [1/ (1+ pipeline stall cycles per instruction)] * Pipeline

Structural Hazards

• When a processor is pipelined, the overlapped execution of instructions requires

pipelining of functional units and duplication of resources to allow all possible

combinations of instructions in the pipeline.

• If some combination of instructions cannot be accommodated because of resource

conflicts, the processor is said to have a structural hazard.

http://learnengineering.in/
http://learnengineering.in/
http://learnengineering.in/

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

EC - 8552 COMPUTER ARCHITECTURE AND ORGANIZATION

Instances:

• When functional unit is not fully pipelined, Then a sequence of instructions using that

unpipelined unit cannot proceed at the rate of one per clock cycle.

• when some resource has not been duplicated enough to allow all combinations of

instructions in the pipeline to execute.

To Resolve this hazard

Stall the the pipeline for 1 clock cycle when the data memory access occurs. A stall is

commonly called a pipeline bubble or just bubble, since it floats through the pipeline taking

space but carrying no useful work.

Data Hazards

• A major effect of pipelining is to change the relative timing of instructions by

overlapping their execution. This overlap introduces data and control hazards.

• Data hazards occur when the pipeline changes the order of read/write accesses to

operands so that the order differs from the order seen by sequentially executing

instructions on an unpipelined processor.

Minimizing Data Hazard Stalls by Forwarding

 The problem solved with a simple hardware technique called forwarding (also called

bypassing and sometimes short-circuiting).

Forwards works as:

• The ALU result from both the EX/MEM and MEM/WB pipeline registers is always fed

back to the ALU inputs.

• If the forwarding hardware detects that the previous ALU operation has written the

register corresponding to a source for the current ALU operation, control logic selects

the forwarded result as the ALU input rather than the value read from the register file.

http://learnengineering.in/
http://learnengineering.in/
http://learnengineering.in/
http://learnengineering.in/

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

EC - 8552 COMPUTER ARCHITECTURE AND ORGANIZATION

Data Hazards Requiring Stalls

• The load instruction has a delay or latency that cannot be eliminated by forwarding

alone. Instead, we need to add hardware, called a pipeline interlock, to preserve the

correct execution pattern.

• A pipeline interlock detects a hazard and stalls the pipeline until the hazard is cleared.

• This pipeline interlock introduces a stall or bubble. The CPI for the stalled instruction

increases by the length of the stall.

Branch Hazards

• Control hazards can cause a greater performance loss for our MIPS pipeline . When a

branch is executed, it may or may not change the PC to something other than its current

value plus 4.

• If a branch changes the PC to its target address, it is a taken branch; if it falls through, it

is not taken, or untaken.

Reducing Pipeline Branch Penalties

• Simplest scheme to handle branches is to freeze or flush the pipeline, holding or deleting

any instructions after the branch until the branch destination is known.

• A higher-performance, and only slightly more complex, scheme is to treat every branch

as not taken, simply allowing the hardware to continue as if the branch were not

executed. The complexity of this scheme arises from having to know when the state

might be changed by an instruction and how to “back out” such a change.

• Implemented by continuing to fetch instructions as if the branch were a normal

instruction.

• The pipeline looks as if nothing out of the ordinary is happening.

• If the branch is taken, however, we need to turn the fetched instruction into a no-op and

restart the fetch at the target address.

http://learnengineering.in/
http://learnengineering.in/
http://learnengineering.in/
http://learnengineering.in/

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

EC - 8552 COMPUTER ARCHITECTURE AND ORGANIZATION

• An alternative scheme is to treat every branch as taken. As soon as the branch is decoded

and the target address is computed, we assume the branch to be taken and begin fetching

and executing at the target .

Performance of Branch Schemes

Pipeline speedup = Pipeline depth / [1+ Branch frequency × Branch penalty]

The branch frequency and branch penalty can have a component from both

unconditional and conditional branches.

