5.1 LANGUAGE MODEL

The goal of a language model is to assign a probability to a sequence of words by means of a probability distribution. Formal grammars (e.g. regular, context free) give a hard
-binaryll model of the legal sentences in a language. NLP is a probabilistic model of a language that gives a probability that a string is a member of a language or not. To specify a correct probability distribution, the probability of all sentences in a language must sum to 1 .

5.1.1 Uses of Language Models

- Speech Recognition
- OCR \& Handwriting Recognition
- Machine Translation
- Generation
- Context sensitive spelling correction.

A language model also supports predicting the completion of a sentence.
Predictivetext input systems can guess what is been typed and provide choices on how to complete it.

5.1.2 N- Gram Word Models

- This model is considered over sequences of words, characters, syllables or other units.
- Estimate probability of each word given prior context.
- An N-gram model uses only $\mathrm{N}-1$ words of prior context.
\checkmark Unigram: P (phone)
\checkmark Bigram: $\mathrm{P}($ phone \mid cell $)$
\checkmark Trigram: P (phone | your cell)
- The Markov assumption is the presumption that the future behavior of a dynamical system only depends on its recent history. In particular, in a Kth-Order Markov Model, next state only depends on the k most recent states, therefore an N - gram model is a ($\mathrm{N}-1$) - order Markov model.

5.1.3 N-gram Character Models

- One of the simplest language models: $\boldsymbol{P}\left(\boldsymbol{c}_{1}{ }^{N}\right)$
- Language identification: given the text determine which language it is written in.
- Build a trigram character model of each candidate language: $\boldsymbol{P}\left(\boldsymbol{c}_{\boldsymbol{i}} \mid \boldsymbol{c}_{\boldsymbol{i - 2 i - 1}}, \boldsymbol{l}\right)$
- Train and Test Corpora
\checkmark A language model must be trained on a large corpus of text to estimate goodparameter values.
\checkmark Model can be evaluated based on its ability to predict a high probability for adisjoint test corpus.
\checkmark The training corpus should be representative of the actual application data.
\checkmark To handle words in the test corpus that did not occur in the training data anexplicit symbol is used.
\checkmark Symbol to represent unknown words (<UNK>)
\checkmark Perplexity - Measure of how well a model -fits\|l the test data.

$$
\text { Perplexity }\left(W_{1}^{N}\right)=\sqrt[N]{\frac{1}{P\left(w_{1} w_{2} \ldots w_{N}\right)}}
$$

\checkmark Smoothing-reassigns probability mass to unseen events.

