

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

EC8691 MICROPROCESSORS AND MICROCONTROLLERS

1.3 INSTRUCTION SET

The 8086 instructions are categorized into the following main types.

1. Data Copy / Transfer Instructions

2. Arithmetic and Logical Instructions

3. Shift and Rotate Instructions

4. Loop Instructions

5. Branch Instructions

6. String Instructions

7. Flag Manipulation Instructions

8. Machine Control Instructions

DATA COPY / TRANSFER INSTRUCTIONS:

The data transfer instructions move data between memory and the general-purpose and

segment registers, and perform operations such as conditional moves, stack access, and data

conversion.

There are four basic 8086 instructions for transferring quantities to and/or from the registers

and memory such as,

 General purpose data transfer instructions

 I/O transfer instruction

 Special address transfer instruction

 Flag transfer instruction

General purpose data transfer instructions

 MOV

 PUSH

 POP

 XCHG

 XLAT

MOV:

This instruction copies a word or a byte of data from some source to a destination. The

destination can be a register or a memory location. The source can be a register, a memory

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

EC8691 MICROPROCESSORS AND MICROCONTROLLERS

location, or an immediate number.

Syntax:

Depending on the addressing modes it can transfer information from

S.No. Type of Transfer Instruction Description

1. Register to register MOV AX,BX MOV r1, r2

(Move Data; Move the content of the one

register to another).

[r1] <-- [r2]

2. Immediate operand to

a register

MOV AX,5000H MOV r, data.

(Move immediate data to register).

[r] <-- data.

3. Immediate operand to

a memory location

MOV

[8010H],5000H

MOV M, data.

(Move immediate data to memory). M <--

data.

4. Memory location to

register

MOV AX,[8010H] MOV r, m

(Move the content of memory register).

r <-- [M]

5. Register to Memory

location

MOV [8010H],AX MOV M, r.

(Move the content of register to memory).

M <-- [r]

6. Register to segment

register(except CS)

MOV [BX],AX

MOV sr, r.

(Move the content of register to segment

register).

[sr] <-- [r]

7. segment register to

register

MOV AX,[BX] MOV sr, m.

(Move the content of segment register to

register).

MOV destination, source

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

EC8691 MICROPROCESSORS AND MICROCONTROLLERS

SPECIAL ADDRESS TRANSFER

 LEA: Load Effective Address

Load effective address of the operand into specified register

Eg: LEA BX,ADR :effective address of label ADR

LDS: Load DS register and other specified register from memory.

Eg. LDS BX,5000H

LES: Load ES register and other specified register from memory.

Eg. LES BX,5000H

Flag transfer instructions: LAHF:

Load (copy to) AH with the low byte the flag register. [AH] [Flags low byte]

SAHF:

Store (copy) AH registers to low byte of flag register. [Flags low byte] [AH]

PUSHF:

Copy flag register to top of stack.

POPF:

Copy word at top of stack to flag register.

Arithmetic Instructions:

The 8086 provides many arithmetic operations: addition, subtraction, negation, increment,

decrement multiplication and comparing two values.

Addition Instruction:

 Add contents of two registers with or without carry

[r] <-- [sr]

8. Segment register to

memory

MOV [8010H],[BX] MOV sr, m.

(Move the content of segment register to

memory).

[M] <-- [sr]

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

EC8691 MICROPROCESSORS AND MICROCONTROLLERS

 Add contents of a registers and a memory with or without carry

 Add immediate data to a registers or a memory with or without carry

 Increment the content of a register or a memory location

 To perform ASCII adjustment after addition

 To perform decimal adjustment after addition

ADD:

The add instruction adds the contents of the source operand to the destination operand.

Syntax: ADD oper1, oper2

ADD AX, 0100H Add immediate value to the content of AX

ADD AX, BX Add contents of AX and BX and result in AX

ADD AX, [SI] Add word from memory at offset [SI] in DS to the content of DX

ADD AX, [5000H] Add content of data whose address is 5000H with AX and result in

AX

ADD [5000H], 0100H Add immediate value to the content of data whose address

is 5000H and result in 5000H

ADC: Add with Carry

This instruction performs the same operation as ADD instruction, but adds the carry flag to the

result.

ADC AX, 0100H Add immediate value plus carry status to the content of

AX

ADC AX, BX Add contents of AX and BX plus carry status and result

in AX

ADC AX, [SI] Add word from memory at offset [SI] in

DS plus carry status to the content of DX

ADC AX, [5000H] Add content of data whose address is 5000H plus carry

status with AX and result in AX

ADC [5000H], 0100H Add immediate value to the content of data whose

address is 5000H plus carry status and result in 5000H

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

EC8691 MICROPROCESSORS AND MICROCONTROLLERS

INC: Increment

This instruction increases the contents of the specified Register or memory location.

Immediate data cannot be operand of this instruction. Eg. INCAX

INC [BX] INC [5000H]

AAA: ASCII Adjust After Addition

 The AAA instruction is executed after an ADD instruction that add two ASCII coded

operand to give a byte of result in AL.

 The AAA instruction converts the resulting contents of AL to a unpacked decimal

digits.

 After the addition it will check the lower 4 bits of AL is a valid BCD number in the

range of 0 to 9

 If it is between 0 to 9 the AF is zero and AAA sets AH=0

 If lower digit of AL is between 0 to 9 AF is set,06 is added to AL. The upper 4 bits

of AL are cleared and AH is incremented by one

 If lower digit of AL greater than 9, then 06 is added to AL. The upper 4 bits of AL

are cleared and AH is incremented by one.

DAA: Decimal Adjust After Addition

 The DAA instruction is executed after an ADD instruction that add two ASCII coded

operand to give a byte of result in AL.

 The DAA instruction converts the resulting contents of AL to a unpacked decimal

digits.

 If lower nibble is greater than 9, after addition it will add 06 to the lower nibble in

AL.

 After adding 06 to lower nibble of AL, if upper nibble of AL is greater than 9, then

adds 60H to AL.

Subtraction Instruction:

 Subtract contents of two registers with or without carry

 Subtract contents of a registers and a memory with or without carry

 Subtract immediate data to a registers or a memory with or without carry

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

EC8691 MICROPROCESSORS AND MICROCONTROLLERS

 Decrement the content of a register or a memory location

 To perform ASCII adjustment after Subtract

 To perform decimal adjustment after Subtract

SUB: Subtract

The subtract instruction subtracts the source operand from the destination operand and the

result is left in the destination operand.

SUB AX, 0100H Subtract immediate value to the content of AX

SUB AX, BX Subtract contents of AX and BX and result in AX

SUB AX, [SI] Subtract word from memory at offset

[SI] in DS to the content of DX

SUB AX, [5000H] Subtract content of data whose address is 5000H with AX

and result in AX

SUB [5000H], 0100H Subtract immediate value to the content of data whose

address is 5000H and result in 5000H

SBB: Subtract with Borrow

The subtract with borrow instruction subtracts the source operand and the borrow flag (CF)

which may reflect the result of the previous calculations, from the destination operand

SBB AX, 0100H Subtract immediate value plus carry status to the content

of

AX

SBB AX, BX Subtract contents of AX and BX plus carry status and

result in AX

SBB AX, [SI] Subtract word from memory at offset

[SI] in DS plus carry status to the content of DX

SBB AX, [5000H] Subtract content of data whose address is 5000H plus

carry

status with AX and result in AX

SBB [5000H], 0100H Subtract immediate value to the content of data whose

address is 5000H plus carry status and result in5000H

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

EC8691 MICROPROCESSORS AND MICROCONTROLLERS

DEC: Decrement

The decrement instruction subtracts 1 from the contents of the specified register or memory

location.

Eg. DEC AX DEC [5000H]

AAS: ASCII Adjust After Subtraction

 The AAA instruction is executed after an SUB instruction that subtracts two ASCII

coded operand to give a byte of result in AL.

 The AAA instruction converts the resulting contents of AL to a unpacked decimal digits.

 After the addition it will check the lower 4 bits of AL is a valid BCD number in the

range of 0 to9

 If it is between 0 to 9 the AF is zero and AAA sets AH=0

 If lower digit of AL is between 0 to 9 AF is set,06 is subtracted to AL. The upper 4 bits

of AL are cleared and AH is incremented by one.

 If lower digit of AL greater than 9, then 06 is subtracted to AL. The upper 4 bits of AL

are cleared and AH is incremented by one.

DAS: Decimal Adjust After Subtraction

 The DAA instruction is executed after an SUB instruction that subtract two ASCII coded

operand to give a byte of result in AL.

 The DAA instruction converts the resulting contents of AL to a unpacked decimal digits.

 If lower nibble is greater than 9, after subtraction it will subtract 06 to the lower nibble

in AL.

 After subtracting 06 to lower nibble of AL, if upper nibble of AL is greater than 9, then

subtract 60H to AL.

NEG: Negate

The negate instruction forms 2’s complement of the specified destination in the instruction.

The destination can be a register or a memory location. This instruction can be implemented

by inverting each bit and adding 1 to it.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

EC8691 MICROPROCESSORS AND MICROCONTROLLERS

Eg. NEG AL

AL = 0011 0101 35H

Replace number in AL with its 2’s complement AL = 1100 1011 = CBH

CMP: Compare

This instruction compares the source operand, which may be a register or an immediate data

or a memory location, with a destination operand that may be a register or a memory location

Eg. CMP BX, 0100H CMP AX, 0100H CMP [5000H], 0100H CMP BX, [SI] CMP BX, CX

Multiplication Instruction:

MUL: Unsigned Multiplication Byte or Word

This instruction multiplies an unsigned byte or word by the contents of AL. Eg. MUL BH;

(AX) (AL) x (BH)

MUL CX; (DX)(AX) (AX) x (CX)

MUL WORD PTR [SI]; (DX)(AX) (AX) x ([SI])

IMUL: Signed Multiplication

This instruction multiplies a signed byte in source operand by a signed byte in AL or a signed

word in source operand by a signed word in AX.

Eg. IMUL BH IMUL CX IMUL [SI]

AAM: ASCII Adjust after Multiplication

This instruction, after execution, converts the product available In AL into unpacked BCD

format.

Eg. MOV AL, 04; AL = 04 MOV BL ,09; BL = 09

MUL BL; AX = AL*BL; AX=24H AAM; AH = 03, AL=06

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

EC8691 MICROPROCESSORS AND MICROCONTROLLERS

Division Instruction: DIV: Unsigned division

This instruction is used to divide an unsigned word by a byte or to divide an unsigned double

word by a word.

Eg. DIV CL; Word in AX / byte in CL; Quotient in AL, remainder in AH

DIV CX; Double word in DX and AX / word; in CX, and Quotient in AX; remainder in DX

IDIV: Unsigned division

This instruction is used to divide an signed word by a byte or to divide an unsigned double

word by a word.

Eg. IDIV CL; Word in AX / byte in CL; Quotient in AL, remainder in AH IDIV CX; Double

word in DX and AX / word; in CX, and Quotient inAX;

remainder in DX

AAD: ASCII Adjust before Division

This instruction converts two unpacked BCD digits in AH and AL to the equivalent binary

number in AL. This adjustment must be made before dividing the two unpacked BCD digits

in AX by an unpacked BCD byte. In the instruction sequence, this instruction appears before

DIV instruction.

Eg. AX 05 08

AAD result in AL 00 3A 58D = 3A H in AL

The result of AAD execution will give the hexadecimal number 3A in AL and 00 in AH where

3A is the hexadecimal Equivalent of 58(decimal).

CBW: Convert Signed Byte to Word

This instruction copies the sign of a byte in AL to all the bits in AH. AH is then said to be sign

extension of AL.

Eg. CBW

AX= 0000 0000 1001 1000 Convert signed byte in AL signed word in AX. Result in AX

= 1111 1111 1001 1000

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

EC8691 MICROPROCESSORS AND MICROCONTROLLERS

CWD: Convert Signed Word to Double Word

This instruction copies the sign of a byte in AL to all the bits in AH. AH is then said to be sign

extension of AL.

Eg. CWD

Convert signed word in AX to signed double word in DX: AX DX= 1111 1111 1111 1111

Result in AX = 1111 0000 1100 0001

Logical instructions AND: Logical AND

This instruction bit by bit ANDs the source operand that may be an immediate register or

a memory location to the destination operand that may a register or a memory location. The

result is stored in the destination operand.

Syntax:

Eg. AND AX, 0008H AND AX, BX

If the Content of AX is 3A0F

 AX 0011 1010 0000 1111

 AND

 0008 0000 0000 0000 1000

 AX 0000 0000 0000 1000

OR: Logical OR

This instruction bit by bit ORs the source operand that may be an immediate, register or

a memory location to the destination operand that may a register or a memory location. The

result is stored in the destination operand.

Syntax:

OR destination, source

AND destination, source

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

EC8691 MICROPROCESSORS AND MICROCONTROLLERS

NOT: Logical Invert

This instruction complements the contents of an operand register or a memory location, bit by

bit.

Syntax:

XOR: Logical Exclusive OR

This instruction bit by bit XORs the source operand that may be an immediate, register or a

memory location to the destination operand that may a register or a memory location. The

result is stored in the destination operand.

Syntax:

Eg. XOR AX, 0098H XOR AX,BX

TEST: Logical Compare Instruction

The TEST instruction performs a bit by bit logical AND operation on the two operands. The

result of this ANDing operation is not available for further use, but flags are affected.

Syntax:

Eg. TEST [0500], 06H

Shift and Rotate Instructions SAL/SHL:

SAL and SHL are two mnemonics for the same instruction.

 This instruction shifts each bit in the specified destination to the left and 0

is stored at LSB position.

 The MSB is shifted into the carry flag.

 The destination can be a byte or a word.

 It can be in a register or in a memory location.

 The number of shifts is indicated by count. Syntax:

SAL / SHL destination, count.

XOR destination, source

NOT destination

TEST destination, source

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

EC8691 MICROPROCESSORS AND MICROCONTROLLERS

Eg. SAL CX, 1

SHL AX, C L

SHR: SHR destination, count

This instruction shifts each bit in the specified destination to the right and 0 is stored at MSB

position.

 The LSB is shifted into the carry flag.

 The destination can be a byte or a word.

 It can be a register or in a memory location.

 The number of shifts is indicated by count.

Syntax:

SAR: SAR destination, count

This instruction shifts each bit in the specified destination some number of bit positions

to the right. As a bit is shifted out of the MSB position, a copy of the old MSB is put in the

MSB position. The LSB will be shifted into CF.

Syntax:

ROL Instruction: Rotate left without carry

This instruction rotates all bits in a specified byte or word to the left some number of bit

positions. MSB is placed as a new LSB and a new CF.

ROR Instruction: Rotate right without carry

This instruction rotates all bits in a specified byte or word to the right some number of bit

SHR destination, count.

SAR destination, count

Syntax: ROL destination, count.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

EC8691 MICROPROCESSORS AND MICROCONTROLLERS

positions. LSB is placed as a new MSB and a new CF.

RCL Instruction: Rotate left with carry

This instruction rotates all bits in a specified byte or word some number of bit positions to the

left along with the carry flag. MSB is placed as a new carry and previous carry is place as new

LSB.

RCR Instruction: Rotate right with carry

This instruction rotates all bits in a specified byte or word some number of bit positions to the

right along with the carry flag. LSB is placed as a new carry and previous carry is place as

new MSB.

Loop Instructions:

Unconditional LOOP Instructions

LOOP: LOOP Unconditionally

This instruction executes the part of the program from the Label or Address specified in the

instruction upto the LOOP instruction CX number of times. At each iteration, CX is

decremented automatically and JUMP IF NOT ZERO structure.

Example: MOV CX, 0004H

Conditional LOOP Instructions

LOOPZ / LOOPE Label

Loop through a sequence of instructions from label while ZF=1 and CX=0.

LOOPNZ / LOOPENE Label

Loop through a sequence of instructions from label while ZF=1 and CX=0.

Branch Instructions:

Branch Instructions transfers the flow of execution of the program to a new Address specified

in the instruction directly or indirectly. When this type of instruction is executed, the CS and

IP registers get loaded with new values of CS and IP corresponding to the location to be

transferred. The Branch Instructions are classified into two types

Syntax: ROR destination, count

Syntax: RCR destination, count.

Syntax: RCL destination, count.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

EC8691 MICROPROCESSORS AND MICROCONTROLLERS

i. Unconditional Branch Instructions.

ii. Conditional Branch Instructions.

Unconditional Branch Instructions:

In Unconditional control transfer instructions, the execution control is transferred to the

specified location independent of any status or condition. The CS and IP are unconditionally

modified to the new CS and IP.

CALL: Unconditional Call

This instruction is used to call a Subroutine (Procedure) from a main program. Address of

procedure may be specified directly or indirectly. There are two types of procedure depending

upon whether it is available in the same segment or in another segment.

i. Near CALL i.e., ±32Kdisplacement.

ii. For CALL i.e., anywhere outside the segment.

On execution this instruction stores the incremented IP & CS onto the stack and loads the CS

& IP registers with segment and offset Addresses of the procedure to be called.

RET: Return from the Procedure.

At the end of the procedure, the RET instruction must be executed. When it is executed,

the previously stored content of IP and CS along with Flags are retrieved into the CS, IP and

Flag registers from the stack and execution of the main program continues further.

INT N: Interrupt Type N.

In the interrupt structure of 8086, 256 interrupts are defined corresponding to the types from

00H to FFH. When INT N instruction is executed, the type byte N is multiplied by 4 and the

contents of IP and CS of the interrupt service routine will be taken from memory block in

0000 segment.

INTO: Interrupt on Overflow

This instruction is executed, when the overflow flag OF is set. This is equivalent to a Type

4 Interrupt instruction.

JMP: Unconditional Jump

This instruction unconditionally transfers the control of execution to the specified Address

using an 8-bit or 16-bit displacement. No Flags are affected by this instruction.

IRET: Return from ISR

When it is executed, the values of IP, CS and Flags are retrieved from the stack to continue the

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

EC8691 MICROPROCESSORS AND MICROCONTROLLERS

execution of the main program.

Conditional Branch Instructions

When this instruction is executed, execution control is transferred to theAddressspecified

relatively in the instruction, provided the condition implicit in the Opcode is satisfied.

Otherwise execution continues sequentially.

JZ/JE Label

Transfer execution control to Address ‘Label’, if ZF=1.

JNZ/JNE Label

Transfer execution control to Address ‘Label’, if ZF=0

JS Label

Transfer execution control to Address ‘Label’, if SF=1.

JNS Label

Transfer execution control to Address ‘Label’, if SF=0.

JO Label

Transfer execution control to Address ‘Label’, if OF=1.

JNO Label

Transfer execution control to Address ‘Label’, if OF=0.

JNP Label

Transfer execution control to Address ‘Label’, if PF=0.

JP Label

Transfer execution control to Address ‘Label’, if PF=1.

JB Label

Transfer execution control to Address ‘Label’, if CF=1.

JNB Label

Transfer execution control to Address ‘Label’, if CF=0.

JCXZ Label

Transfer execution control to Address ‘Label’, if CX=0

String Manipulation Instructions

A series of data byte or word available in memory at consecutive locations, to be referred as

Byte String or Word String. A String of characters may be located in consecutive memory

locations, where each character may be represented by its ASCII equivalent. The 8086

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

EC8691 MICROPROCESSORS AND MICROCONTROLLERS

supports a set of more powerful instructions for string manipulations for referring to a string,

two parameters are required.

 Starting and End Address of the String.

 Length of the String.

The length of the string is usually stored as count in the CX register. The incrementing or

decrementing of the pointer, in string instructions, depends upon the Direction Flag (DF)

Status. If it is a Byte string operation, the index registers are updated by one. On the other

hand, if it is a word string operation, the index registers are updated bytwo.

REP: Repeat Instruction Prefix

This instruction is used as a prefix to other instructions, the instruction to which the

REP prefix is provided, is executed repeatedly until the CX register becomes zero (at each

iteration CX is automatically decremented by one).

 REPE / REPZ - repeat operation while equal / zero.

 REPNE / REPNZ - repeat operation while not equal / not zero.

These are used for CMPS, SCAS instructions only, as instruction prefixes.

MOVSB / MOVSW: Move String Byte or String Word

Suppose a string of bytes stored in a set of consecutive memory locations is to be moved to

another set of destination locations. The starting byte of source string is located in the memory

location whose Address may be computed using SI (Source Index) and DS (Data Segment)

contents. The starting Address of the destination locations where this string has to be relocated

is given by DI (Destination Index) and ES (Extra Segment) contents.

CMPS: Compare String Byte or String Word

The CMPS instruction can be used to compare two strings of byte or words. The length

of the string must be stored in the register CX. If both the byte or word strings are equal, zero

Flag is set.

The REP instruction Prefix is used to repeat the operation till CX (counter) becomes zero or

the condition specified by the REP Prefix is False.

SCAN: Scan String Byte or String Word

This instruction scans a string of bytes or words for an operand byte or word specified in the

register AL or AX. The String is pointed to by ES: DI register pair. The length of the string

stored in CX. The DF controls the mode for scanning of the string. Whenever a match to the

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

EC8691 MICROPROCESSORS AND MICROCONTROLLERS

specified operand is found in the string, execution stops and the zero Flag is set. If no match

is found, the zero flag is reset.

LODS: Load String Byte or String Word

The LODS instruction loads the AL / AX register by the content of a string pointed to by DS:

SI register pair. The SI is modified automatically depending upon DF, If it is a byte transfer

(LODSB), the SI is modified by one and if it is a word transfer (LODSW), the SI is modified

by two. No other Flags are affected by this instruction.

STOS: Store String Byte or String Word

The STOS instruction Stores the AL / AX register contents to a location in the string pointer

by ES: DI register pair. The DI is modified accordingly, No Flags are affected by this

instruction.

The direction Flag controls the String instruction execution, the source index SI and

Destination Index DI are modified after each iteration automatically. If DF=1, then the

execution follows auto decrement mode, SI and DI are decremented automatically after each

iteration. If DF=0, then the execution follows auto increment mode. In this mode, SI and DI

are incremented automatically after each iteration.

Flag Manipulation and Processor Control Instructions

These instructions control the functioning of the available hardware inside the processor chip.

These instructions are categorized into two types:

 Flag Manipulation instructions.

 Machine Control instructions.

Flag Manipulation instructions

The Flag manipulation instructions directly modify some of the Flags of 8086.

i. CLC – Clear Carry Flag.

ii. CMC – Complement Carry Flag.

iii. STC – Set Carry Flag.

iv. CLD – Clear Direction Flag.

v. STD – Set Direction Flag.

vi. CLI – Clear Interrupt Flag.

vii. STI – Set Interrupt Flag.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

EC8691 MICROPROCESSORS AND MICROCONTROLLERS

Machine Control instructions

The Machine control instructions control the bus usage and execution

i. WAIT – Wait for Test input pin to go low.

ii. HLT – Halt the process.

iii. NOP – No operation.

iv. ESC – Escape to external device like NDP

v. LOCK – Bus lock instruction prefix.

