CONFORMAL MAPPING-MAPPING BY FUNCTIONS

Definition: Conformal Mapping

A transformation that preserves angels between every pair of curves through a point, both in magnitude and sense, is said to be conformal at that point.

Some standard transformations

Translation:

The transformation w = C + z, where C is a complex constant, represents a translation.

Let
$$z = x + iy$$

 $w = u + iv$ and $C = a + ib$
Given $w = z + C$,

$$(i.e.) u + iv = x + iy + a + ib$$

$$\Rightarrow u + iv = (x + a) + i(y + b)$$

Equating the real and imaginary parts, we get u = x + a, v = y + b

Hence the image of any point p(x, y) in the z-plane is mapped onto the point p'(x + a, y + b) in the w-plane. Similarly every point in the z-plane is mapped onto the w plane.

If we assume that the w-plane is super imposed on the z-plane, we observe that the point (x, y) and hence any figure is shifted by a distance $|C| = \sqrt{a^2 + b^2}$ in the direction of C i.e., translated by the vector representing C.

Hence this transformation transforms a circle into an equal circle. Also the corresponding regions in the z and w planes will have the same shape, size and orientation.

Example: What is the region of the w plane into which the rectangular region in the Z plane bounded by the lines x = 0, y = 0, x = 1 and y = 2 is mapped under the transformation w = z + (2 - i)

Given
$$w = z + (2 - i)$$

(i.e.) $u + iv = x + iy + (2 - i) = (x + 2) + i(y - 1)$

Equating the real and imaginary parts

$$u = x + 2$$
, $v = y - 1$

Given boundary lines are

transformed boundary lines are

$$x = 0$$

 $y = 0$
 $x = 1$
 $y = 2$
 $u = 0 + 2 = 2$
 $v = 0 - 1 = -2$
 $u = 1 + 2 = 3$
 $v = 2 - 1 = 1$

Hence, the lines x = 0, y = 0, x = 1, and y = 2 are mapped into the lines u = 2, v = -1, u = 3, and v = 1 respectively which form a rectangle in the w plane.

Example: Find the image of the circle |z| = 1 by the transformation w = z + 2 + 4i Solution:

Given
$$w = z + 2 + 4i$$

(i.e.)
$$u + iv = x + iy + 2 + 4i$$

= $(x + 2) + i(y + 4)$

Equating the real and imaginary parts, we get

$$u = x + 2, v = y + 4,$$

 $x = u - 2, y = v = 4,$
 $x = u - 2, y = v = 4,$
OPTIMIZE OUTSPREAD

Given |z| = 1

$$(i.e.) x^2 + y^2 = 1$$
$$(u-2)^2 + (v-4)^2 = 1$$

Hence, the circle $x^2 + y^2 = 1$ is mapped into $(u - 2)^2 + (v - 4)^2 = 1$ in w plane which is also a circle with centre (2, 4) and radius 1.

2. Magnification and Rotation

The transformation w = cz, where c is a complex constant, represents both magnification and rotation.

This means that the magnitude of the vector representing z is magnified by a = |c| and its direction is rotated through angle $\alpha = amp(c)$. Hence the transformation consists of a magnification and a rotation.

Example: Determine the region 'D' of the w-plane into which the triangular region D enclosed by the lines x = 0, y = 0, x + y = 1 is transformed under the transformation w = 2z.

Solution:

Let
$$w = u + iv$$

$$z = x + iy$$
Given $w = 2z$

$$u + iv = 2(x + iy)$$

$$u + iv = 2x + i2y$$

$$u = 2x \Rightarrow x = \frac{u}{2}, v = 2y \Rightarrow y = \frac{v}{2}$$

Given region (D) whose		Transformed region D' whose
boundary lines are OBSER	VE (boundary lines are SPREAD
x = 0	⇒	u = 0
y = 0	⇒	v = 0
x + y = 1	⇒	$\frac{u}{2} + \frac{v}{2} = 1[\because x = \frac{u}{2}, y = \frac{v}{2}]$
		(i. e.) u + v = 2

In the z plane the line x = 0 is transformed into u = 0 in the w plane. In the z plane the line y = 0 is transformed into v = 0 in the w plane. In the z plane the line x + y =is transformed intou + v = 2 in the w plane.

Example: Find the image of the circle $|z| = \lambda$ under the transformation w = 5z. Solution:

Given
$$w = 5z$$

$$|w| = 5|z|$$

i.e.,
$$|w| = 5\lambda$$
 $[\because |z| = \lambda]$

Hence, the image of $|z| = \lambda$ in the z plane is transformed into $|w| = 5\lambda$ in the w plane under the transformation w = 5z.

Example: Find the image of the circle |z| = 3 under the transformation w = 2z Solution:

Given
$$w = 2z$$
, $|z| = 3$
 $|w| = (2)|z|$
 $= (2)(3)$, Since $|z| = 3$

Hence, the image of |z| = 3 in the z plane is transformed into |w| = 6 w plane under the transformation w = 2z.

Example: Find the image of the region y > 1 under the transformation

$$w=(1-i)z.$$

Given
$$w = (1 - i)z$$
.
 $u + v = (1 - i)(x + iy)$
 $= x + iy - ix + y$
 $= (x + y) + i(y - x)$
i.e., $u = x + y$, $v = y - x$
 $u + v = 2y$ $u - v = 2x$

$$y = \frac{u+v}{2} \qquad \qquad x = \frac{u-v}{2}$$

Hence, image region y > 1 is $\frac{u+v}{2} > 1$ i.e., u + v > 2 in the w plane.

3. Inversion and Reflection

The transformation $w = \frac{1}{z}$ represents inversion w.r.to the unit circle |z| = 1, followed by reflection in the real axis.

We know that, the general equation of circle in z plane is

Substitute, (1) and (2) in (3)we get

$$\frac{u^2}{(u^2+v^2)^2} + \frac{v^2}{(u^2+v^2)^2} + 2g\left(\frac{u}{u^2+v^2}\right) + 2f\left(\frac{-v}{u^2+v^2}\right) + c = 0$$

$$\Rightarrow c(u^2+v^2) + 2gu - 2fv + 1 = 0 \qquad \dots (4)$$

which is the equation of the circle in w plane

Hence, under the transformation $w = \frac{1}{z}$ a circle in z plane transforms to another circle in the w plane. When the circle passes through the origin we have c = 0 in (3). When c = 0, equation (4) gives a straight line.

Example: Find the image of |z - 2i| = 2 under the transformation $w = \frac{1}{z}$ Solution:

Given
$$|z - 2i| = 2$$
(1) is a circle.
Centre = (0,2)
radius = 2
Given $w = \frac{1}{z} \Rightarrow z = \frac{1}{w}$
(1) $\Rightarrow \left| \frac{1}{w} - 2i \right| = 2$
 $\Rightarrow |1 - 2wi| = 2|w|$
 $\Rightarrow |1 - 2(u + iv)i| = 2|u + iv|$

⇒
$$|1 - 2ui + 2v| = 2|u + iv|$$

⇒ $|1 + 2v - 2ui| = 2|u + iv|$
⇒ $\sqrt{(1 + 2v)^2 + (-2u)^2} = 2\sqrt{u^2 + v^2}$
⇒ $(1 + 2v)^2 + 4u^2 = 4(u^2 + v^2)$
⇒ $1 + 4v^2 + 4v + 4u^2 = 4(u^2 + v^2)$
⇒ $1 + 4v = 0$
⇒ $v = -\frac{1}{4}$

Which is a straight line in w plane.

Example: Find the image of the circle |z-1|=1 in the complex plane under the mapping $w=\frac{1}{z}$

Given
$$|z-1| = 1$$
(1) is a circle.

Centre =(1,0)

radius = 1

Given $w = \frac{1}{z} \Rightarrow z = \frac{1}{w}$

(1)
$$\Rightarrow \left|\frac{1}{w} - 1\right| = 1$$

$$\Rightarrow \left|1 - w\right| = \left|w\right|$$

$$\Rightarrow \left|1 - (u + iv)\right| = \left|u + iv\right|$$

$$\Rightarrow \left|1 - u + iv\right| = \left|u + iv\right|$$

$$\Rightarrow \sqrt{(1 - u)^2 + (-v)^2} = \sqrt{u^2 + v^2}$$

$$\Rightarrow (1 - u)^2 + v^2 = u^2 + v^2$$

$$\Rightarrow 1 + u^2 - 2v + v^2 = u^2 + v^2$$

$$\Rightarrow 2u = 1$$

$$\Rightarrow u = \frac{1}{2}$$

Example: Find the image of the infinite strips

(i)
$$\frac{1}{4} < y < \frac{1}{2}$$
 (ii) $0 < y < \frac{1}{2}$ under the transformation $w = \frac{1}{z}$

Solution:

Given
$$w = \frac{1}{z}$$
 (given)
i.e., $z = \frac{1}{w}$

$$z = \frac{1}{u+iv} = \frac{u-iv}{(u+iv)+(u-iv)} = \frac{u-iv}{u^2+v^2}$$

$$x + iy = \frac{u-iv}{u^2+v^2} = \left[\frac{u}{u^2+v^2}\right] + i\left[\frac{-v}{u^2+v^2}\right]$$

$$x = \frac{u}{u^2+v^2} \dots (1), y = \frac{-v}{u^2+v^2} \dots (2)$$

(i) Given strip is
$$\frac{1}{4} < y < \frac{1}{2}$$

(i) Given strip is
$$\frac{1}{4} < y < \frac{1}{2}$$

when $y = \frac{1}{4}$

$$\frac{1}{4} = \frac{-v}{u^2 + v^2}$$

by (2)

$$\Rightarrow u^2 + v^2 = -4v$$

$$\Rightarrow u^2 + v^2 + 4v = 0$$

$$\Rightarrow u^2 + (v + 2)^2 = 4$$

which is a circle whose centre is at (0, -2) in the w plane and radius is 2k.

when
$$y = \frac{1}{2}$$

$$\frac{1}{2} = \frac{-v}{u^2 + v^2}$$

$$\Rightarrow u^2 + v^2 = -2v$$

$$\Rightarrow u^2 + v^2 + 2v = 0$$

$$\Rightarrow u^2 + (v+1)^2 = 0$$

$$\Rightarrow u^2 + (v+1)^2 = 1$$
(3)

which is a circle whose centre is at (0, -1) in the w plane and unit radius

Hence the infinite strip $\frac{1}{4} < y < \frac{1}{2}$ is transformed into the region in between circles $u^2 + (v+1)^2 = 1$ and $u^2 + (v+2)^2 = 4$ in the w plane.

ii) Given strip is $0 < y < \frac{1}{2}$

when
$$y = 0$$

$$\Rightarrow v = 0$$
 by (2)

when $y = \frac{1}{2}$ we get $u^2 + (v+1)^2 = 1$ by (3)

Hence, the infinite strip $0 < y < \frac{1}{2}$ is mapped into the region outside the circle $u^2 + (v+1)^2 = 1$ in the lower half of the w plane.

Example: Find the image of x = 2 under the transformation $w = \frac{1}{z}$. Solution:

Given
$$w = \frac{1}{z}$$

i.e., $z = \frac{1}{w}$

$$z = \frac{1}{u+iv} = \frac{u-iv}{(u+iv)+(u-iv)} = \frac{u-iv}{u^2+v^2}$$

$$x + iy = \left[\frac{u}{u^2+v^2}\right] + i\left[\frac{-v}{u^2+v^2}\right]$$
i. e., $x = \frac{u}{v^2+v^2}$(1), $y = \frac{-v}{u^2+v^2}$(2)

Given x = 2 in the z plane.

$$\therefore 2 = \frac{u}{u^2 + v^2}$$
 by (1)

$$2(u^2 + v^2) = u$$

$$u^2 + v^2 - \frac{1}{2}u = 0$$

which is a circle whose centre is $(\frac{1}{4}, 0)$ and radius $\frac{1}{4}$

x = 2 in the z plane is transformed into a circle in the w plane.

Example: What will be the image of a circle containing the origin(i.e., circle passing through the origin) in the XY plane under the transformation $w = \frac{1}{z}$?

Solution:

Given
$$w = \frac{1}{z}$$

i.e., $z = \frac{1}{w}$

$$z = \frac{1}{u+iv} = \frac{u-iv}{(u+iv)+(u-iv)} = \frac{u-iv}{u^2+v^2}$$

$$x + iy = \left[\frac{u}{u^2+v^2}\right] + i\left[\frac{-v}{u^2+v^2}\right]$$
i.e., $x = \frac{u}{u^2+v^2}$... (1),

$$y = \frac{-v}{u^2+v^2}$$
 ... (2)

Given region is circle $x^2 + y^2 = a^2$ in z plane.

Substitute, (1) and (2), we get

), we get
$$\left[\frac{u^2}{(u^2+v^2)^2} + \frac{\mathbf{c}}{(u^2+v^2)^2}\right] = a^2$$

$$\left[\frac{u^2+v^2}{(u^2+v^2)^2}\right] = a^2$$

$$\frac{1}{(u^2+v^2)} = a^2$$

$$u^2 + v^2 = \frac{1}{a^2}$$

Therefore the image of circle passing through the origin in the XY —plane is a circle passing through the origin in the w — plane.

Example: Determine the image of 1 < x < 2 under the mapping $w = \frac{1}{z}$

Solution:

Given
$$w = \frac{1}{z}$$

i.e., $z = \frac{1}{w}$

$$z = \frac{1}{u+iv} = \frac{u-iv}{(u+iv)+(u-iv)} = \frac{u-iv}{u^2+v^2}$$

$$x + iy = \left[\frac{u}{u^2+v^2}\right] + i\left[\frac{-v}{u^2+v^2}\right]$$
i.e., $x = \frac{u}{u^2+v^2}$ (1), $y = \frac{-v}{u^2+v^2}$ (2)

Given 1 < x < 2

When
$$x = 1$$

$$\Rightarrow 1 = \frac{u}{u^2 + v^2} \quad \text{by} (1)$$

$$\Rightarrow u^2 + v^2 = u$$

$$\Rightarrow u^2 + v^2 - u = 0$$

which is a circle whose centre is $(\frac{1}{2}, 0)$ and is $\frac{1}{2}$

When
$$x = 2$$

$$\Rightarrow 2 = \frac{u}{u^2 + v^2} \quad \text{by } \dots (1)$$

$$\Rightarrow u^2 + v^2 = \frac{u}{2}$$

$$\Rightarrow u^2 + v^2 - \frac{u}{2} = 0$$

which is a circle whose centre is $(\frac{1}{4}, 0)$ and is $\frac{1}{4}$

Hence, the infinite strip 1 < x < 2 is transformed into the region in between the circles in the w – plane.

4. Transformation $w = z^2$

Problems based on $w = z^2$

Example: Discuss the transformation $w = z^2$.

Solution:

Given
$$w = z^2$$

 $u + iv = (x + iy)^2 = x^2 + (iy)^2 + i2xy = x^2 - y^2 + i2xy$
 $i.e., u = x^2 - y^2$ (1), $v = 2xy$ (2)

Elimination:

$$(2) \Rightarrow x = \frac{v}{2y}$$

$$(1) \Rightarrow u = \left(\frac{v}{2y}\right)^2 - y^2$$

$$\Rightarrow u = \frac{v^2}{4y^2} + y^2$$

$$\Rightarrow 4uy^2 = v^2 - 4y^4$$

$$\Rightarrow 4uy^2 + 4y^4 = v^2$$

$$\Rightarrow y^2[4u + 4y^2] = v^2$$

$$\Rightarrow 4y^2[u + y^2] = v^2$$

$$\Rightarrow v^2 = 4y^2(y^2 + u)$$
when $y = c \ (\neq 0)$, we get
$$v^2 = 4c^2(u + c^2)$$

which is a parabola whose vertex at $(-c^2, 0)$ and focus at (0,0)

Hence, the lines parallel to X-axis in the z plane is mapped into family of confocal parabolas in the w plane.

when
$$y = 0$$
, we get $v^2 = 0$ i.e., $v = 0$, $u = x^2$ i.e., $u > 0$

Hence, the line y = 0, in the z plane are mapped into v = 0, in the w plane.

Elimination:

$$(2) \Rightarrow y = \frac{v}{2x}$$

$$(1) \Rightarrow u = x^2 - \left(\frac{v}{2x}\right)^2$$

$$\Rightarrow u = x^2 - \frac{v^2}{4x^2}$$

$$\Rightarrow \frac{v^2}{4x^2} = x^2 - u$$

$$\Rightarrow v^2 = (4x^2)(x^2 - u)$$

when
$$x = c \neq 0$$
, we get $v^2 = 4c^2(c^2 - u) = -4c^2(u - c^2)$

which is a parabola whose vertex at $(c^2, 0)$ and focus at (0,0) and axis lies along the u -axis and which is open to the left.

Hence, the lines parallel to y axis in the z plane are mapped into confocal parabolas in the w plane when x = 0, we get $v^2 = 0$. i.e., v = 0, $u = -y^2$ i.e., u < 0

i.e., the map of the entire y axis in the negative part or the left half of the u -axis.

Example: Find the image of the hyperbola $x^2 - y^2 = 10$ under the transformation $w = z^2$ if

$$w = u + iv$$

Solution:

Given
$$w = z^2$$

 $u + iv = (x + iy)^2$
 $= x^2 - y^2 + i2xy$
 $i.e., u = x^2 - y^2$ (1)
 $v = 2xy$ (2)
Given $x^2 - y^2 = 10$
 $i.e., u = 10$

Hence, the image of the hyperbola $x^2 - y^2 = 10$ in the z plane is mapped into u = 10 in the w plane which is a straight line.

Example: Find the critical points of the transformation $w^2=(z-\alpha)\,(z-\beta)$. Solution:

Given
$$w^2 = (z - \alpha) (z - \beta)$$
 ...(1)

Critical points occur at $\frac{dw}{dz} = 0$ and $\frac{dz}{dw} = 0$

Differentiation of (1) w. r. to z, we get PTIMIZE OUTSPREAD

$$\Rightarrow 2w \frac{dw}{dz} = (z - \alpha) + (z - \beta)$$

$$= 2z - (\alpha + \beta)$$

$$\Rightarrow \frac{dw}{dz} = \frac{2z - (\alpha + \beta)}{2w} \qquad \dots (2)$$

Case (i)
$$\frac{dw}{dz} = 0$$

$$\Rightarrow \frac{2z - (\alpha + \beta)}{2w} = 0$$

$$\Rightarrow 2z - (\alpha + \beta) = 0$$

$$\Rightarrow 2z = \alpha + \beta$$

$$\Rightarrow z = \frac{\alpha + \beta}{2}$$

Case (ii)
$$\frac{dz}{dw} = 0$$

$$\Rightarrow \frac{2w}{2z - (\alpha + \beta)} = 0$$

$$\Rightarrow \frac{w}{z - \frac{\alpha + \beta}{2}} = 0$$

$$\Rightarrow w = 0 \Rightarrow (z - \alpha)(z - \beta) = 0$$

$$\Rightarrow z = \alpha, \beta$$

 \therefore The critical points are $\frac{\alpha+\beta}{2}$, α and β .

Example: Find the critical points of the transformation $w = z^2 + \frac{1}{z^2}$. Solution:

Given
$$w = z^2 + \frac{1}{z^2}$$
(1)

Critical points occur at $\frac{dw}{dz} = 0$ and $\frac{dz}{dw} = 0$

Differentiation of (1) w. r. to z, we get

$$\Rightarrow \frac{dw}{dz} = 2z - \frac{2}{z^3} = \frac{2z^4 - 2}{z^3}$$

Case
$$(i)\frac{dw}{dz} = 0$$

$$\Rightarrow \frac{2z^4 - 2}{z^3} = 0 \Rightarrow 2z^4 - 2 = 0$$
$$\Rightarrow z^4 - 1 = 0$$
$$\Rightarrow z = \pm 1, \pm i$$

Case
$$(ii)\frac{dz}{dw} = 0$$

$$\Rightarrow \frac{z^3}{2z^4 - 2} = 0 \Rightarrow z^3 = 0 \Rightarrow z = 0$$

... The critical points are ±1, ±1,00 UTSPREAD

Example: Prove that the transformation $w = \frac{z}{1-z}$ maps the upper half of the z plane into the upper half of the w plane. What is the image of the circle |z| = 1 under this transformation.

Given
$$|z| = 1$$
 is a circle
Centre = $(0,0)$

Radius
$$= 1$$

Given
$$w = \frac{z}{1-z}$$

$$\Rightarrow z = \frac{w}{w+1}$$

$$\Rightarrow |z| = \left| \frac{w}{w+1} \right| = \frac{|w|}{|w+1|}$$
Given $|z| = 1$

$$\Rightarrow \frac{|w|}{|w+1|} = 1$$

$$\Rightarrow |w| = |w+1|$$

$$\Rightarrow |u+iv| = |u+iv+1|$$

$$\Rightarrow \sqrt{u^2 + v^2} = \sqrt{(u+1)^2 + v^2}$$

$$\Rightarrow u^2 + v^2 = (u+1)^2 + v^2$$

$$\Rightarrow u^2 + v^2 = u^2 + 2u + 1 + v^2$$

$$\Rightarrow 0 = 2u + 1$$

$$\Rightarrow u = \frac{-1}{2}$$

Further the region |z| < 1 transforms into $u > \frac{-1}{2}$

OBSERVE OPTIMIZE OUTSPREAD