1.7 ELECTRIC FIELD INTENSITY

ELECTRIC FILED OR ELECTRIC FIELD INTENSITY:

The electric field or electric field intensity is defined as the electric force per unit charge. It is given by

$$E=\frac{F}{q}$$

According to coulomb's law

$$F = \frac{Qq}{4\pi\varepsilon r^2}$$

Electric Filed

$$E=\frac{F}{q}$$

Substitute F value in above equation

$$E = \frac{\frac{Qq}{4\pi\varepsilon r^2}}{q}$$

$$E = \frac{Qq}{4\pi \varepsilon r^2 q}$$

$$E = \frac{Q}{4\pi\varepsilon r^2} V/m$$

The another unit of electric field is Volts/meter

ELECTRIC FIELD INTENSITY DUE TO LINE CHARGE:

Considered uniformly charged line of length \boldsymbol{L} whose linear charge density is $\boldsymbol{\rho_l}$ Coulomb/meter. Consider a small element \boldsymbol{dl} at a distance \boldsymbol{l} from one end of the charged line as shown in figure 1.7.1 .Let \boldsymbol{P} be any point at a distance \boldsymbol{r} from the element \boldsymbol{dl} .

Figure 1.7.1 Evaluation of the *E* field due to a line charge

[Source: "Elements of Electromagnetics" by Matthew N.O.Sadiku, page-114]

The electric field at a point P due to the charge element ρdl is given

$$dE = \frac{\rho_l dl}{4\pi \varepsilon r^2}$$

The x and y components of electric field dE are given by

From the above diagram find $\sin \theta$ and $\cos \theta$

$$\sin \theta = \frac{dE_x}{dE}$$

$$dE_x = dE \sin \theta$$

$$\cos \theta = \frac{dE_y}{dE}$$

$$dE_y = dE \cos \theta$$

Substitute dE expression in dE_x

$$dE_x = \frac{\rho_l dl \sin \theta}{4\pi \varepsilon r^2}$$
$$dE_y = \frac{\rho_l dl \cos \theta}{4\pi \varepsilon r^2}$$

From the above diagram find an heta

$$tan \theta = \frac{h}{x - l}$$
$$x - l = \frac{h}{\tan \theta}$$
$$x - l = h \cot \theta$$

Differentiate above equation on both sides

$$0 - dl = h(-\csc^{2}\theta)$$
$$-dl = -h(\csc^{2}\theta)$$
$$dl = h(\csc^{2}\theta) \cdot d\theta$$

From the above diagram find $\sin \theta$

$$\sin \theta = \frac{h}{r}$$

$$r = \frac{h}{\sin \theta}$$

$$r = h \csc \theta$$

Substitute dl and r value in dE_x

$$dE_x = \frac{\rho_l dl \sin \theta}{4\pi \varepsilon r^2}$$

$$dE_x = \frac{\rho_l h(\csc^2 \theta) d\theta \sin \theta}{4\pi \varepsilon (h \csc \theta)^2}$$

$$dE_x = \frac{\rho_l h(\csc^2 \theta) d\theta \sin \theta}{4\pi \varepsilon h^2 \csc^2 \theta}$$
$$dE_x = \frac{\rho_l \sin \theta d\theta}{4\pi \varepsilon h}$$

Integrate the above equation dE_x considered the limit as α_1 to $\pi - \alpha_2$

The electric field E_x due to the entire length of line charge is given by

$$\int dE_x = \int_{\alpha_1}^{\pi - \alpha_2} \frac{\rho_l \sin \theta d\theta}{4\pi \varepsilon h}$$

$$E_x = \int_{\alpha_1}^{\pi - \alpha_2} \frac{\rho_l \sin \theta d\theta}{4\pi \varepsilon h}$$

$$E_x = \frac{\rho_l}{4\pi \varepsilon h} \int_{\alpha_1}^{\pi - \alpha_2} \sin \theta d\theta$$

$$E_x = \frac{\rho_l}{4\pi \varepsilon h} [-\cos \theta]_{\alpha_1}^{\pi - \alpha_2}$$

$$E_x = \frac{\rho_l}{4\pi \varepsilon h} [-\cos(\pi - \alpha_2) - (\cos \alpha_1)]$$

$$E_x = \frac{\rho_l}{4\pi \varepsilon h} [(\cos \alpha_2) + (\cos \alpha_1)]$$

$$E_x = \frac{\rho_l}{4\pi \varepsilon h} [(\cos \alpha_1) + (\cos \alpha_2)]$$

Substitute dl and r value in dE_x

$$dE_{y} = \frac{\rho_{l}h(\csc^{2}\theta)d\theta\cos\theta}{4\pi\varepsilon(h\csc\theta)^{2}}$$

$$dE_{y} = \frac{\rho_{l}h(\csc^{2}\theta)d\theta\cos\theta}{4\pi\varepsilon h^{2}\csc^{2}\theta}$$

$$dE_{y} = \frac{\rho_{l}h(\csc^{2}\theta)d\theta\cos\theta}{4\pi\varepsilon h^{2}\csc^{2}\theta}$$

$$dE_y = \frac{\rho_l \, d\theta \cos \theta}{4\pi \varepsilon h}$$

$$dE_y = \frac{\rho_l \cos \theta d\theta}{4\pi \varepsilon h}$$

Similarly for y component of E

Integrate the above equation dE_y considered the limit as α_1 to $\pi-\alpha_2$

The electric field E_y due to the entire length of line charge is given by

$$\int dE_y = \int_{\alpha_1}^{\pi - \alpha_2} \frac{\rho_l \cos \theta \, d\theta}{4\pi \varepsilon h}$$

$$E_y = \int_{\alpha_1}^{\pi - \alpha_2} \frac{\rho_l \cos \theta \, d\theta}{4\pi \varepsilon h}$$

$$E_y = \frac{\rho_l}{4\pi \varepsilon h} \int_{\alpha_1}^{\pi - \alpha_2} \cos \theta \, d\theta$$

$$E_y = \frac{\rho_l}{4\pi \varepsilon h} [\sin \theta]_{\alpha_1}^{\pi - \alpha_2}$$

$$E_y = \frac{\rho_l}{4\pi \varepsilon h} [\sin (\pi - \alpha_2) - (\sin \alpha_1)]$$

$$E_y = \frac{\rho_l}{4\pi \varepsilon h} [(\sin \alpha_2) - (\sin \alpha_1)]$$

Case (i): If the point **P** is at bisector of a line, then $\alpha_1 = \alpha_2 = \alpha$

$$E_y = 0$$
 E becomes E_x

$$E_{x} = \frac{\rho_{l}}{4\pi\varepsilon h} [(\cos\alpha_{1}) + (\cos\alpha_{2})]$$

$$E_{x} = \frac{\rho_{l}}{4\pi\varepsilon h} [(\cos\alpha) + (\cos\alpha)]$$

$$E_{x} = \frac{\rho_{l}}{4\pi\varepsilon h} (2\cos\alpha)$$

$$E_x = \frac{\rho_l}{2\pi\varepsilon h}(\cos\alpha)$$

$$E_y = \frac{\rho_l}{4\pi\varepsilon h}[(\sin\alpha_2) - (\sin\alpha_1)]$$

Substitute $\alpha_1 = \alpha_2 = \alpha$

$$E_{y} = \frac{\rho_{l}}{4\pi\varepsilon h} [(\sin\alpha) - (\sin\alpha)]$$

$$E_{y} = \frac{\rho_{l}}{4\pi\varepsilon h} [0]$$

$$E_{y} = 0$$

 \boldsymbol{E} becomes \boldsymbol{E}_{x}

$$E = E_x$$

$$E = E_x = \frac{\rho_l}{2\pi\varepsilon h}(\cos\alpha)$$

$$E = \frac{\rho_l}{2\pi\varepsilon h}(\cos\alpha)$$

Case (ii): If the line is infinitely long then $\alpha_1=\alpha_2=\alpha=0$

$$E_v = 0$$
 E becomes E_x

$$E_{x} = \frac{\rho_{l}}{4\pi\varepsilon h} [(\cos\alpha_{1}) + (\cos\alpha_{2})]$$

$$E_{x} = \frac{\rho_{l}}{4\pi\varepsilon h} [(\cos0) + (\cos0)]$$

$$E_{x} = \frac{\rho_{l}}{4\pi\varepsilon h} [(1) + (1)]$$

$$E_{x} = \frac{\rho_{l}}{4\pi\varepsilon h} [2]$$

$$E_{x} = \frac{\rho_{l}}{2\pi\varepsilon h}$$

$$E_{y} = \frac{\rho_{l}}{4\pi\varepsilon h} [(\sin\alpha_{2}) - (\sin\alpha_{1})]$$

Substitute $\alpha_1 = \alpha_2 = \alpha = 0$

$$E_y = \frac{\rho_l}{4\pi\varepsilon h}[(\sin 0) - (\sin 0)]$$

 $E_y = \frac{\rho_l}{4\pi\varepsilon h}[(0) - (0)]$

$$E_y = rac{
ho_l}{4\pi arepsilon h}[0]$$
 $E_y = 0$
 $E ext{ becomes } E_x$
 $E = E_x$
 $E = \frac{
ho_l}{2\pi arepsilon h}$

ELECTRIC FIELD INTENSITY DUE TO CIRCULAR DISC:

Consider a circular disc of radius R is charged uniformly with a charge density of ρ_s coulomb/ m^2 . Let P be any point on the axis of the disc at a distance from the centre. Consider an annular ring of radius r and of radial thickness dr as shown in figure 1.7.2. The area of the annular ring is $ds = 2\pi r dr$.

Figure 1.7.2 Evaluation of the *E* field due to a charged ring

[Source: "Elements of Electromagnetics" by Matthew N.O.Sadiku, page-120]

The field intensity at point **P** due to the charged annular ring is given by

$$dE = \frac{\rho_S ds}{4\pi \varepsilon d^2}$$

Since the horizontal component of electric field intensity is zero, The horizontal components and vertical components are dE_x and dE_y

The horizontal components of angular ring is zero

$$dE_x = 0$$

$$E_x = 0$$

The horizontal components of angular ring E_y have to find for circular ring. the vertical component is given by

$$dE_y = \frac{\rho_S ds \cos \theta}{4\pi \varepsilon d^2}$$

From the above diagram find $tan \theta$ and $sin \theta$

$$\tan \theta = \frac{r}{h}$$

$$r = h \tan \theta$$

$$\sin\theta = \frac{r}{d}$$

$$d = \frac{r}{\sin \theta}$$

Assume

$$ds = 2\pi r dr$$

$$dE_y = \frac{\rho_S ds \cos \theta}{4\pi \varepsilon d^2}$$

Substitute ds in dE_y

$$dE_y = \frac{\rho_S 2\pi r dr \cos \theta}{4\pi \varepsilon d^2}$$

$$r = h \tan \theta$$

Differentiate above equation

$$dr = h \sec^2 \theta d\theta$$

Substitute dr and d in dE_v

$$dE_y = \frac{\rho_S(2\pi r)h\sec^2\theta d\theta\cos\theta}{4\pi\varepsilon d^2}$$

$$dE_y = \frac{\rho_S(2\pi r)h\sec^2\theta d\theta\cos\theta}{4\pi\varepsilon\left(\frac{r}{\sin\theta}\right)^2}$$

$$dE_y = \frac{\rho_S(2\pi r)(h\sec^2\theta)d\theta\cos\theta\sin^2\theta}{4\pi\varepsilon r^2}$$

$$dE_y = \frac{\rho_S(2\pi r)(h\sec^2\theta)\sin^2\theta\cos\theta d\theta}{4\pi\varepsilon r^2}$$

$$dE_y = \frac{\rho_S(2\pi r)(h)\sin^2\theta\cos\theta d\theta}{4\pi\varepsilon r^2\cos^2\theta}$$

$$dE_y = \frac{\rho_S(2\pi r)(h)\sin^2\theta\cos\theta d\theta}{4\pi\varepsilon r^2\cos\theta}$$

$$dE_y = \frac{\rho_S(2\pi r)(h)\sin^2\theta d\theta}{4\pi\varepsilon r^2\cos\theta}$$

$$dE_y = \frac{\rho_S(2\pi r)(h)\tan\theta\sin\theta d\theta}{4\pi\varepsilon r^2}$$

Substitute r in dE_y

$$dE_y = \frac{\rho_S(h) \tan \theta \sin \theta \, d\theta}{2\varepsilon r}$$

$$dE_y = \frac{\rho_S(h) \tan \theta \sin \theta \, d\theta}{2\varepsilon \, h \tan \theta}$$

$$dE_y = \frac{\rho_S \sin \theta \, d\theta}{2\varepsilon}$$

Integrate the above equation dE_y considered the limit as 0 to α

$$\int dE_y = \int_0^\alpha \frac{\rho_S \sin \theta \, d\theta}{2\varepsilon}$$

$$\int dE_y = \frac{\rho_S}{2\varepsilon} \int_0^\alpha \sin \theta \, d\theta$$

$$E_y = \frac{\rho_S}{2\varepsilon} \left[-\cos \theta \right]_0^\alpha$$

$$E_y = \frac{\rho_S}{2\varepsilon} \left[(-\cos \alpha) - (-\cos 0) \right]$$

$$E_y = \frac{\rho_S}{2\varepsilon} \left[(1) + (-\cos \alpha) \right]$$

$$E_y = \frac{\rho_S}{2\varepsilon} \left[(1) + (-\cos \alpha) \right]$$

The total electric field

$$E = E_x + E_y$$

$$E = E_x + E_y$$

$$E_x = 0$$

$$E_y = \frac{\rho_S}{2\varepsilon} [1 - \cos \alpha]$$

$$E = 0 + \frac{\rho_S}{2\varepsilon} [1 - \cos \alpha]$$

$$E = \frac{\rho_S}{2\varepsilon} [1 - \cos \alpha]$$

ELECTRIC FIELD INTENSITY DUE TO INFINITE SHEET OF CHARGE:

Consider an infinite plane sheet which is uniformly charged with a charge density of ρ_s *Coulom/m*² as shown in figure 1.7.3.

Figure 1.7.2 Evaluation of the *E* field due to an infinite sheet of charge

[Source: "Elements of Electromagnetics" by Matthew N.O.Sadiku, page-116]

The field intensity at any point **P** due to infinite plane sheet of charge can be evaluated by applying expression of charged circular disc.

The field intensity at point P due to the charged annular ring is given by

$$dE = \frac{\rho_S ds}{4\pi\varepsilon d^2}$$

Since the horizontal component of electric field intensity is zero, The horizontal components and vertical components are dE_x and dE_y

The horizontal components of angular ring is zero

$$dE_x = 0$$

$$E_x = 0$$

The horizontal components of angular ring E_y have to find for circular ring. the vertical component is given by

$$dE_y = \frac{\rho_S ds \cos \theta}{4\pi \varepsilon d^2}$$

From the above diagram find $tan \theta$ and $sin \theta$

$$\tan\theta = \frac{r}{h}$$

$$r = h \tan \theta$$

$$\sin\theta = \frac{r}{d}$$

$$d = \frac{r}{\sin \theta}$$

 $ds = 2\pi r dr$

$$dE_y = \frac{\rho_S ds \cos \theta}{4\pi \varepsilon d^2}$$

Assume

Substitute ds in dE_y

$$dE_y = \frac{\rho_S 2\pi r dr \cos \theta}{4\pi \varepsilon d^2}$$

$$r = h \tan \theta$$

Differentiate above equation

$$dr = h \sec^2 \theta d\theta$$

Substitute dr and d in dE_y

$$dE_y = \frac{\rho_S(2\pi r)h\sec^2\theta d\theta\cos\theta}{4\pi\varepsilon d^2}$$

$$dE_y = \frac{\rho_S(2\pi r)h\sec^2\theta d\theta\cos\theta}{4\pi\varepsilon\left(\frac{r}{\sin\theta}\right)^2}$$

$$dE_y = \frac{\rho_S(2\pi r)(h\sec^2\theta)d\theta\cos\theta\sin^2\theta}{4\pi\varepsilon r^2}$$

$$dE_y = \frac{\rho_S(2\pi r)(h\sec^2\theta)\sin^2\theta\cos\theta\,d\theta}{4\pi\varepsilon r^2}$$

$$dE_y = \frac{\rho_S(2\pi r)(h)\sin^2\theta\cos\theta\,d\theta}{4\pi\varepsilon r^2\cos^2\theta}$$

$$dE_y = \frac{\rho_S(2\pi r)(h)\sin^2\theta d\theta}{4\pi\varepsilon r^2\cos\theta}$$

$$dE_y = \frac{\rho_S(2\pi r)(h)\tan\theta\sin\theta\,d\theta}{4\pi\varepsilon r^2}$$

$$dE_y = \frac{\rho_S(2\pi r)(h)\tan\theta\sin\theta\,d\theta}{4\pi\varepsilon r^2}$$

$$dE_y = \frac{\rho_S(2\pi r)(h)\tan\theta\sin\theta\,d\theta}{4\pi\varepsilon r^2}$$

Substitute r in dE_v

$$dE_y = \frac{\rho_S(h) \tan \theta \sin \theta \, d\theta}{2\varepsilon r}$$

$$dE_y = \frac{\rho_S(h) \tan \theta \sin \theta \, d\theta}{2\varepsilon h \tan \theta}$$

$$dE_y = \frac{\rho_S \sin \theta \, d\theta}{2\varepsilon}$$

Integrate the above equation dE_{ν} consider the limit as 0 to α

$$\int dE_y = \int_0^\alpha \frac{\rho_S \sin \theta \, d\theta}{2\varepsilon}$$

$$\int dE_y = \frac{\rho_S}{2\varepsilon} \int_0^\alpha \sin \theta \, d\theta$$

$$E_y = \frac{\rho_S}{2\varepsilon} \left[-\cos \theta \right]_0^\alpha$$

$$E_y = \frac{\rho_S}{2\varepsilon} \left[(-\cos \alpha) - (-\cos 0) \right]$$

$$E_{y} = \frac{\rho_{S}}{2\varepsilon} \left[(-\cos \alpha) + (1) \right]$$

$$E_{y} = \frac{\rho_{S}}{2\varepsilon} \left[(1) + (-\cos \alpha) \right]$$

$$E_{y} = \frac{\rho_{S}}{2\varepsilon} \left[1 - \cos \alpha \right]$$

$$E = E_{x} + E_{y}$$

$$E = E_{x} + E_{y}$$

$$E_{x} = 0$$

$$E_{y} = \frac{\rho_{S}}{2\varepsilon} \left[1 - \cos \alpha \right]$$

$$E = 0 + \frac{\rho_S}{2\varepsilon} \left[1 - \cos \alpha \right]$$

$$E = \frac{\rho_S}{2\varepsilon} \left[1 - \cos \alpha \right]$$

The electric field due to infinite uniformly charge sheet $\alpha = 90^{\circ}$

The total electric field

$$E = \frac{\rho_S}{2\varepsilon} [1 - \cos \alpha]$$

$$E = \frac{\rho_S}{2\varepsilon} [1 - \cos 90^\circ]$$

$$E = \frac{\rho_S}{2\varepsilon} [1 - 0]$$

$$E = \frac{\rho_S}{2\varepsilon} [1]$$

$$E = \frac{\rho_S}{2\varepsilon}$$