1.8. Data Acquisition

Understanding Storage Formats for Digital Evidence

- Data in a forensics acquisition tool is stored as an image file
- Three formats
 - Raw format
 - Proprietary formats
 - Advanced Forensics Format (AFF)

Raw Format

- Makes it possible to write bit-stream data to files
- Advantages
 - Fast data transfers
 - Ignores minor data read errors on source drive
 - Most computer forensics tools can read raw format
- Disadvantages
 - Requires as much storage as original disk or data
 - Tools might not collect marginal (bad) sectors

Proprietary Formats

- Most forensics tools have their own formats
- Features offered
 - Option to compress or not compress image files
 - Can split an image into smaller segmented files
 - Can integrate metadata into the image file
- Disadvantages
 - Inability to share an image between different tools
 - File size limitation for each segmented volume
- The Expert Witness format is unofficial standard

Advanced Forensics Format

- Developed by Dr. Simson L. Garfinkel as an open-source acquisition format
- Design goals
 - Provide compressed or uncompressed image files
 - No size restriction for disk-to-image files

- Provide space in the image file or segmented files for metadata
- Simple design with extensibility
- Open source for multiple platforms and Oss
- Internal consistency checks for self-authentication
- File extensions include .afd for segmented image files and .afm for AFF metadata
- AFF is open source

Determining the Best Acquisition Method

- Types of acquisitions
 - Static acquisitions and live acquisitions
- Four methods of data collection
 - Creating a disk-to-image file
 - Creating a disk-to-disk
 - Creating a logical disk-to-disk or disk-to-data file
 - Creating a sparse data copy of a file or folder
- Determining the best method depends on the circumstances of the investigation
- Creating a disk-to-image file
 - Most common method and offers most flexibility
 - Can make more than one copy
 - Copies are bit-for-bit replications of the original drive
 - ProDiscover, EnCase, FTK, SMART, Sleuth Kit, X-Ways, iLookIX
- Creating a disk-to-disk
 - When disk-to-image copy is not possible
 - Tools can adjust disk's geometry configuration
 - EnCase, SafeBack, SnapCopy
- Logical acquisition or sparse acquisition
 - Can take several hours; use when your time is limited
 - Logical acquisition captures only specific files of interest to the case

- Sparse acquisition collects fragments of unallocated (deleted) data
- For large disks
- PST or OST mail files, RAID servers
 - When making a copy, consider: Size of the source disk
 - Lossless compression might be useful
 - Use digital signatures for verification
- When working with large drives, an alternative is using tape backup systems
- Whether you can retain the disk

Contingency Planning for Image Acquisitions

- Create a duplicate copy of your evidence image file
- Make at least two images of digital evidence
 - Use different tools or techniques
- Copy host protected area of a disk drive as well
 - Consider using a hardware acquisition tool that can access the drive at the BIOS level
- Be prepared to deal with encrypted drives
- Whole disk encryption feature in Windows called BitLocker makes static acquisitions more difficult and May require user to provide decryption key

Using Acquisition Tools

- Acquisition tools for Windows Advantages
- Make acquiring evidence from a suspect drive more convenient
 - Especially when used with hot-swappable devices -

Disadvantages

- Must protect acquired data with a well-tested write-blocking hardware device
- Tools can't acquire data from a disk's host protected area

Some countries haven't accepted the use of write-blocking devices for data acquisitions

Mini-WinFE Boot CDs and USB Drives

Mini-WinFE

- Enables you to build a Windows forensic boot CD/DVD or USB drive so that connected drives are mounted as read-only
- Before booting a suspect's computer:
 - Connect your target drive, such as a USB drive
- After Mini-WinFE is booted:
 - You can list all connected drives and alter your target USB drive to readwrite mode so you can run an acquisition program

Acquiring Data with a Linux Boot CD

- Linux can access a drive that isn't mounted
- Windows OSs and newer Linux automatically mount and access a drive
- Forensic Linux Live CDs don't access media automatically
 - Which eliminates the need for a write-blocker
 - Using Linux Live CD Distributions Forensic Linux Live CDs
 - Contain additionally utilities
 - Using Linux Live CD Distributions (cont'd) Forensic Linux Live CDs (cont'd)
 - Configured not to mount, or to mount as read-only, any connected storage media
 - Well-designed Linux Live CDs for computer forensics
 - Penguin Sleuth
 - F.I.R.E
 - CAINE
 - Deft

- Kali Linux
- Knoppix
- SANS Investigative Toolkit
- Preparing a target drive for acquisition in Linux
- Current Linux distributions can create Microsoft FAT and NTFS partition tables
- **fdisk** command lists, creates, deletes, and verifies partitions in Linux
- **mkfs.msdos** command formats a FAT file system from Linux
- If you have a functioning Linux computer, follow steps starting on page
 - 99 to learn how to prepare a target drive for acquisition
 - Acquiring data with dd in Linux
- dd (-data dump) command
 - Can read and write from media device and data file
 - Creates raw format file that most computer forensics analysis tools can read
- Shortcomings of dd command
 - Requires more advanced skills than average user
 - Does not compress data
- dd command combined with the split command
- Segments output into separate volumes
- Acquiring data with dd in Linux (cont'd)
- Follow the step starting on page 104 in the text to make an image of an NTFS

disk on a FAT32 disk

- Acquiring data with dcfldd in Linux
- The dd command is intended as a data management tool
 - Not designed for forensics acquisitions
 - Acquiring data with dcfldd in Linux (cont'd) dcfldd additional functions
 - Specify hex patterns or text for clearing disk space

- Log errors to an output file for analysis and review
- Use several hashing options
- Refer to a status display indicating the progress of the acquisition in bytes
- Split data acquisitions into segmented volumes with numeric extensions
- Verify acquired data with original disk or media data

Capturing an Image with ProDiscover Basic

- Connecting the suspect's drive to your workstation
- Document the chain of evidence for the drive
- Remove the drive from the suspect's computer
- Configure the suspect drive's jumpers as needed
- Connect the suspect drive to write-blocker device
- Create a storage folder on the target drive
- Using ProDiscover's Proprietary Acquisition Format
 - ProDiscover creates image files with an .eve extension, a log file (.log extension), and a special inventory file (.pds extension)
 - If the compression option was selected, ProDiscover uses a .cmp rather than an .eve extension on all segmented volumes
- Using ProDiscover's Raw Acquisition Format
 - Follow the same steps as for the proprietary format, but select the —UNIX style
 dd format in the Image Format list box
 - Raw acquisition saves only the image data and hash value
 - The raw format creates a log file (.pds extension) and segmented volume files

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

20 of the disk:	12432240 sectors	(6070,43 MB)	
plit into equal sized	mage of 650	мв	Split
mage Size (M 650.00 650.00 650.00	3) Size Sectoro 1331200 1331200 1331200 1331200	Destination C.WolkVD C.WolkVD C.WolkVD	14003\C
Image Inform Image Nor Image Size	nbar: 0 (MB): 0 (Sectora): 0		Merge

	Capture Image	X
Saurce Drive	Physical MonoyE070.430 MB	-
Deutination	C:YW/oik/Chap031/ChapterVinC >>	Sple
Image Format:	ProDiscover Format (recommended)	•
Total sectors to capture :	12432240 HEA	
Shedow Volume Name.		
PioDiscover Image		
Technician Name, Jos	Friday	
Image Number: InC	heitä	-
Devolution :		
Composition C Yes G No	Paccount	
	0.K Cancel	

Fig: The split image dialog box

Fig: The Capture Image dialog box

Capturing an Image with Access Data FTK Imager Lite

- Included with AccessData Forensic Toolkit
- Designed for viewing evidence disks and disk-to-image files
- Makes disk-to-image copies of evidence drives
 - At logical partition and physical drive level
 - Can segment the image file
- Evidence drive must have a hardware write-blocking device Or run from a Live CD, such

as Mini-WinFE

24.1	AccessData FT	K Imager 3.1.1.6	- 0
The New Hole Hele			
Evidence Tree	H Filter Lint		
	Plane	Sice Type	Date Modified
Custom Content Sources Codecortie SystemPathotie	N Ochens		^
A Beel (2) [concer] toward () [con Properties] How Value Inter- () For User Build, prose ()			

Fig: The FTK Imager main window

CS8074 CYBER FORENSICS

- FTK Imager can't acquire a drive's host protected area
- Use a write-blocking device and follow these steps Boot to Windows
 - Connect evidence disk to a write-blocker
 - Connect target disk to write-blocker
 - Start FTK Imager Lite
 - Create Disk Image use Physical Drive option
 - See Figures on the following slides for more steps

	Creating Image – 🗆 🔼
Image Source:	\\. \PHYSICALDRIVE 1
Destination:	C:\Work\Chap03\Chapter\InChp03-ftk
Status:	Image created successfully
THE REPORT OF THE REPORT OF	
	apsed time: 0:07:30 timated time left:

Fig: A complete image save

Validating Data Acquisitions

- Validating evidence may be the most critical aspect of computer forensics
- Requires using a hashing algorithm utility
- Validation techniques
 - CRC-32, MD5, and SHA-1 to SHA-512

Linux Validation Methods

- Validating dd acquired data
 - You can use md5sum or sha1sum utilities
 - md5sum or sha1sum utilities should be run on all suspect disks and volumes or segmented volumes

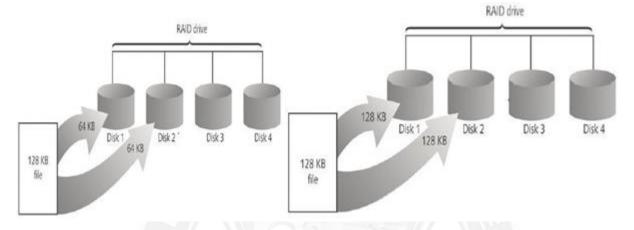
- Validating dcfldd acquired data
 - Use the hash option to designate a hashing algorithm of md5, sha1, sha256, sha384, or sha512
 - hashlog option outputs hash results to a text file that can be stored with the image files
 - vf (verify file) option compares the image file to the original medium

Windows Validation Methods

- Windows has no built-in hashing algorithm tools for computer forensics
 - Third-party utilities can be used
- Commercial computer forensics programs also have built-in validation features
 - Each program has its own validation technique
- Raw format image files don't contain metadata

Separate manual validation is recommended for all raw acquisitions

Performing RAID Data Acquisitions


- Acquisition of RAID drives can be challenging and frustrating because of how RAID systems are
 - Designed
 - Configured
 - Sized
- Size is the biggest concern
 - Many RAID systems now have terabytes of data

Understanding RAID

- Redundant array of independent (formerly —inexpensive) disks (RAID)
 - Computer configuration involving two or more disks
 - Originally developed as a data-redundancy measure
- RAID 0
 - Provides rapid access and increased storage
 - Biggest disadvantage is lack of redundancy

• RAID 1

- Designed for data recovery
- More expensive than RAID 0

Fig: RAID 0-Striping

Fig: RAID 1-MIrroring

- RAID 2
 - Similar to RAID 1
 - Data is written to a disk on a bit level
 - Has better data integrity checking than RAID 0
 - Slower than RAID 0
- RAID 3
 - Uses data stripping and dedicated parity
- RAID 4
 - Data is written in blocks

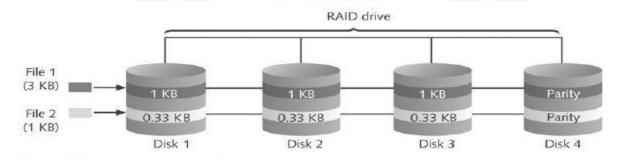
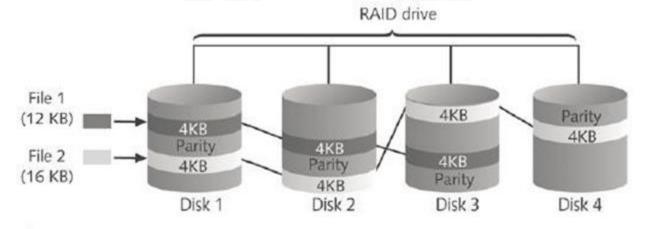



Fig: RAID 2-Striping (bit level)

- RAID 5
 - Similar to RAIDs 0 and 3
 - Places parity recovery data on each disk
- RAID 6
 - Redundant parity on each disk
- RAID 10, or mirrored striping
 - Also known as RAID 1+0
 - Combination of RAID 1 and RAID 0

Fig: RAID 5:Block level striping with distributed parity

Acquiring RAID Disks

Address the following concerns

How much data storage is needed?

What type of RAID is used?

- Do you have the right acquisition tool?
- Can the tool read a forensically copied RAID image?
- Can the tool read split data saves of each RAID disk?
- Copying small RAID systems to one large disk is possible
- Vendors offering RAID acquisition functions
 - Technology Pathways ProDiscover
 - Guidance Software EnCase

- X-Ways Forensics
- AccessData FTK
- Runtime Software
- R-Tools Technologies
- Occasionally, a RAID system is too large for a static acquisition
 - Retrieve only the data relevant to the investigation with the sparse or logical acquisition method

Using Remote Network Acquisition Tools

- You can remotely connect to a suspect computer via a network connection and copy data from it
- Remote acquisition tools vary in configurations and capabilities
- Drawbacks
 - Antivirus, antispyware, and firewall tools can be configured to ignore remote access programs
 - Suspects could easily install their own security tools that trigger an alarm to notify them of remote access intrusions

Remote Acquisition with ProDiscover

- ProDiscover Incident Response additional functions
 - Capture volatile system state information
 - Analyze current running processes
 - Locate unseen files and processes
 - Remotely view and listen to IP ports
 - Run hash comparisons
 - Create a hash inventory of all files remotely
 - PDServer remote agent
 - ProDiscover utility for remote access
 - Needs to be loaded on the suspect
- PDServer installation modes

- Trusted CD
- Preinstallation
- Pushing out and running remotely
- PDServer can run in a stealth mode
 - Can change process name to appear as OS function
- Remote connection security features
 - Password Protection
 - Encryption
 - Secure Communication Protocol
 - Write Protected Trusted Binaries
 - Digital Signatures

Remote Acquisition with EnCase Enterprise

- Remote acquisition features
 - Remote data acquisition of a computer's media and RAM data
 - Integration with intrusion detection system (IDS) tools
 - Options to create an image of data from one or more systems
 - Preview of systems
 - A wide range of file system formats
 - RAID support for both hardware and software

Remote Acquisition with R-Tools R-Studio

- R-Tools suite of software is designed for data recovery
- Remote connection uses Triple Data Encryption Standard (3DES) encryption
- Creates raw format acquisitions
- Supports various file systems

Remote Acquisition with WetStone US-LATT PRO

- US-LATT PRO
 - Part of a suite of tools developed by WetStone

 Can connect to a networked computer remotely and perform a live acquisition of all drives connected to it

Remote Acquisition with F-Response

F-Response

A vendor-neutral remote access utility

Designed to work with any digital forensics program

Sets up a security read-only connection

- Allows forensics examiners to access it
- Four different version of F-Response
 - Enterprise Edition, Consultant + Convert Edition, Consultant Edition, and TACTICAL
 Edition

Using Other Forensics-Acquisition Tools

- Other commercial acquisition tools
 - PassMark Software ImageUSB
 - ASRData SMART
 - Runtime Software
 - ILookIX Investigator IXimager
 - SourceForge

PassMark Software ImageUSB

- PassMark Software has an acquisition tool called ImageUSB for its OSForensics analysis product
- To create a bootable flash drive, you need:
 - Windows XP or later
 - ImageUSB downloaded from the OSForensics Web site

ASRData SMART

- ASRData SMART
 - A Linux forensics analysis tool that can make image files of a suspect drive
 - Can produce proprietary or raw format images

- Capabilities:
 - Data reading of bad sectors
 - Can mount drives in write-protected mode
 - Can mount target drives in read/write mode
 - Compression schemes to speed up acquisition or reduce amount of storage needed

Runtime Software

- Runtime Software offers shareware programs for data acquisition and recovery:
 - DiskExplorer for FAT and NTFS
- Features:
 - Create a raw format image file
 - Segment the raw format or compressed image for archiving purposes
 - Access network computers' drives

ILook Investigator IXimager

IXimager

- Runs from a bootable floppy or CD
- Designed to work only with ILook Investigator
- Can acquire single drives and RAID drives Supports:
- IDE (PATA)
- SCSI
- USB
- FireWire