DESIGN OF BEAM

LATERALLY SUPPORTED:

STEP 1: FIND OUT ULTIMATE LOAD ON BEAM.

Factored Ultimate Load (Factored Load) w = 1.5 × Working Load

STEP 2: FIND OUT MAXIMUM BENDING MOMENT (M) AND SHEAR FORCE (V) ON BEAM.

STEP 3: CALCULATE PLASTIC SECTION MODULUS REQURIED FOR TRIAL SECTION.

$$Z_{P(required)} = \frac{M\gamma_0}{f_v}$$

STEP 4: SELECT SUITABLE SECTION BASED ON Z_p FROM IS: 800: 2007, PAGE NO. 138, 139. WRITE DOWN SE TIONAL PROPERTIES.

STEP 5: SECTION CLASSIFICATION.

a. Find out value of b/t_f and d/t_w . (refer Figure. 2, Page no. 19, IS 800: 2007 to find b and d) t_f = thickness of flange t_w = thickness of web.

b. Refer Table 2, Page no. 18, IS 800: 2007 and classify the section semi-compact, compact, plastic or slender.

STEP 6: CHECK FOR SHEAR. (Clause no. 8.4.1., Page no. 59, IS 800: 2007)

a. Find out design shear strength V_d.

$$V_d = \frac{f_y}{\sqrt{3\gamma_{mo}}} ht_w$$

b. Beam is checked for high / low shear case

 $V \le 0.6 V_d$ low shear case

 $V > 0.6 V_d$ high shear case

STEP 6: CHECK FOR BENDING.

a. For low shear Case (Clause no. 8.2.1.2, Page no. 53, IS 800: 2007)

$$M_d > M$$

M_d = Design Bending Strength

M = Bending Moment

$$M = \beta \ Z \ \underline{f_{y}} \le 1 \mathbb{Z}$$
 (for simply supported beam)

d b
$$_{p}$$
 γ_{mo} $_{e}$ γ_{mo} $\leq 1.5Z_{e} \frac{f_{\gamma}}{\gamma_{mo}}$ (for cantilever beam)

 β_b = 1 for plastic and compact sections.

= Z_e/Z_p for semi compact sections.

Z_e = Elastic section Modulus

Z_p = Plastic section Modulus

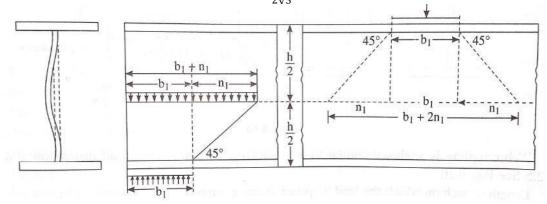
b. For High shear Case (Clause no. 8.2.1.3, Page no. 53, IS 800: 2007)

Refer Clause no. 8.2.1.3, Page no. 53, IS 800: 2007. Generally low shear case is preferred.

STEP 7: CHECK FOR WEB BUCKLING AT SUPPORT (Clause no. 8.7.3.1, Page no. 67, IS 800: 2007)

a. Capacity of section = $A_b f_{cd} > V$

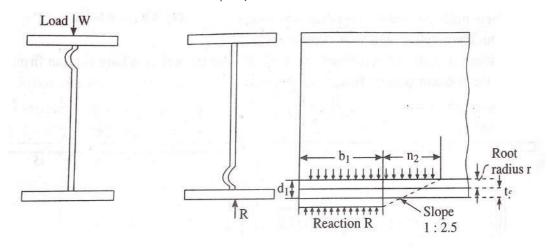
b. $A_b = (b_1 + n_1) t_w$ when load is at support


`

 $A_b = (b_1 + 2n_1) t_w$ when load is not at support

Where, b_1 = stiff bearing length of load = assume between 0 to 100mm n_1 = for 45° dispersion consider h/2

d. Find out F_{cd} = Design Compressive Stress considering class c and f_y = 250 MPa. Slenderness ratio = $\frac{kl}{l} = \frac{0.7d}{l}$


D = depth of the web between the flanges r = least radius of gyration of the section = $\frac{t_w}{2\sqrt{3}}$

STEP 7: CHECK FOR WEB CRIPPLING (Clause no. 8.7.4, Page no. 67, IS 800: 2007) $(h_1+n_2)t_3...f_3...$

Design crippling strength
$$F_w = \frac{(b_1 + n_2)t_w f_{yw}}{\gamma_{mo}} > V$$

Where,
$$b_1$$
 = stiff bearing length = 0 to 100 mm
 n_2 = 2.5 (t_f + r_1)
 f_{yw} = yield stress of web

STEP 8: CHECK FOR DEFLECTION

a. Actual deflection for simply supported

$$\delta_{max} = \frac{5 \ wl^2}{384 \ EI}$$

b. Permissible deflection = Span/300 (table 6, Page no. 31, IS 800: 2007)