# 2.2 ANALYSIS OF CONTINUOUS BEAMS IN SLOPE DEFLECTION METHOD.

# 2.2.1 NUMERICAL EXAMPLES ON( CONTINUOUS BEAMS ):

#### **PROBLEM NO:01**

Analysis the continuous beam shown in fig.2.8,Calculate the support moments using slope deflection method.Draw the SF and BM diagrams.



**Solutions:** 

#### Fixed End Moments:

MFAB = MFBC = MFCD = 
$$-W1^2/12 = -20x6^2/12 = -60 \text{ kNm}$$
  
MFBA = MFCB = MFDC =  $-W1^2/12 = 20x6^2/12 = 60 \text{ kNm}$ 

# • Slope Deflection Equations:

The structure is symmetrical. So is the loadind. There is no sinking of supports. Hence the following conditions prevail.

- $\theta A = \theta D = 0$
- $\delta = 0$  for all spans
- $\theta B = \theta C$

Hence there is only one unknown displacement, namely  $\theta B$ . For span AB, the general slope deflection equation is

MAB = MFAB + 2EI/6(
$$2\theta$$
A +  $\theta$ B +  $3\delta$ /l)  
MAB = -  $60 + 2EI/6(\theta$ B) ----- (2.1)

Since 
$$\theta A = 0$$
 and  $\delta = 0$ 

$$MAB = 60 + 2EI/6(\theta B)$$
 ---- (2.2)

No other slope deflection equation is needed.

Since  $\theta B$  is the only unknown.

For span BC,

$$MBC = MFBC + 2EI/6(2\theta B + \theta C + 3\delta/l)$$

$$MBC = -60 + 2EI/6(3\theta B)$$
 ---- (2.3)

# • Joint Equilibrium Equations:

$$MAB + MBC = 0$$

$$60 + 2EI\theta B/3 - 60 + EI\theta B = 0$$

Hence,  $\theta B = 0$ 

## • Final Moments:

$$MAB = MBC = MCD = -60 \text{ kNm}$$

$$MBA = MCB = MDC = 60 \text{ kNm}$$

# • Shear Force Diagram:

## Span AB:



Taking moments about A, on the free body diagram of span AB,

$$-RB1 \times 6 - MAB + MBA + w1^{2}/2 = 0$$

- RB1 x 
$$6 - 60 + 60 + 20$$
 x  $6^2/2 = 0$ 

$$RB1 = 60KN ; RA = 60KN$$

Similarly in span BC, RB2 = RC1 = 60

$$RB = RB1 + RB2 = 120 KN$$

## • BMD and SFD:



Simply supported span bending moment =  $\frac{wl^2}{8} = \frac{20 \times 6^2}{8} = 90 \text{ kNm}$ 



Shear force diagram

## PROBLEM NO:02

Analysis the continuous beam shown in fig.2.10,Calculate the support moments using slope deflection method.Support B sinks by 10mm.Take  $E = 2 \times 10^5 \text{ N/mm}^2$ , $I = 16 \times 10^7 \text{ mm}^4$ .Sketch the SF and BM diagrams.



## **Solution:**

## • Fixed End Moments:

MFAB = 
$$-W1^2/12 = -20x6^2/12 = -60 \text{ kNm}$$
;

MFBA = 
$$W1^2/12 = 20x6^2/12 = 60 \text{ kNm}$$
;

MFBC = 
$$-W1^2/12 = -20x3^2/12 = -15 \text{ kNm}$$
;

MFCB = 
$$W1^2/12 = 20x3^2/12 = 15 \text{ kNm}$$
;

$$MFCD = -W1/8 = -50x6/8 = -37.5 \text{ kNm};$$

$$MFDC = Wl/8 = 50x6/8 = 37.5 \text{ kNm};$$

## • Slope Deflection Equations:

MAB = MFAB + 2EI/6(2
$$\theta$$
A +  $\theta$ B + 3 $\delta$ /l)  
= -60 + EI/3(0 +  $\theta$ B - 1/200) --- (1)  
MBA = MFBA + 2EI/6(2 $\theta$ B +  $\theta$ A + 3 $\delta$ /l)

$$= 60 + EI/3(2\theta B - 3 \times 10/6000) --- (2)$$

$$MBC = MFBC + 2EI/3(2\theta B + \theta C + 3\delta/l)$$

$$= -15 + 2EI/3(2\theta B + \theta C + 1/100) --- (3)$$

$$MCB = MFCB + 2EI/3(2\theta C + \theta B + 3\delta/l)$$

$$= 15 + 2EI/3(2\theta C + \theta B + 1/100) --- (4)$$

$$MCD = MFCD + 2EI/6(2\theta C + \theta D + 3\delta/l)$$

$$= -37.5 + EI/3(2\theta C) --- (5)$$

$$MDC = MFDC + 2EI/6(2\theta D + \theta C + 3\delta/l)$$

$$= 37.5 + EI/3(\theta C) --- (6)$$

# • Joint Equilibrium Equations:

Joint B:

$$MBA + MBC = 0$$

$$EI/3(6\theta B + 2\theta C + 3/200) = -135$$
 --- (7)

Joint C:

$$MCB + MCD = 0$$

$$EI(\theta B + 3\theta C + 1/100) = 33.75$$
 --- (8)

Equvating (7 & 8); we get

$$\theta C = -1/464$$
;  $\theta B = -1/402$ 

## • Final Moments:

$$MAB = -139.843 \text{ kNm};$$

$$MBA = -46.354 \text{ kNm};$$

$$MBC = 46.3 \text{ kNm}$$
;

$$MCB = 83.35 \text{ kNm};$$

$$MCD = -83.477 \text{ kNm};$$

$$MDC = 14.51 \text{ kNm};$$

## • To Draw S.F.D:

Span AB:



Taking moments about A.

$$20 \times 6^2/2 - 46.35 - 139.84 - RB1(6) = 0$$
;  $RB1 = 28.97 \text{ KN}$ 

$$RA = 20 \times 6 - 28.97$$
;  $RA = 91.03 \text{ KN}$ 

Span BC:



Taking moments about B.

$$20 \times 3^2/2 + 83.35 + 46.3 - RC1(3) = 0$$
;  $RC1 = 73.22 \text{ KN}$ 

$$RB2 = 20 \times 3 - 73.22$$
;  $RB2 = -13.21 \text{ KN}$ 

Span CD:



Taking moments about C.

$$14.511 + 50(3) - 83.48 - RD(6) = 0;$$

## • Free BMD:

MAB = 
$$W1^2/8 = 20 \times 6^2/8 = 90 \text{ kNm}$$
  
MBC =  $W1^2/8 = 20 \times 3^2/8 = 22.5 \text{ kNm}$ 

$$MCD = W1/4 = 50 \times 6/4 = 75 \text{ kNm}$$

## • BMD and SFD:



## **PROBLEM NO:03**

Analysis the continuous beam shown in fig.2.3, Calculate the support moments using slope deflection method. Sketch the BM diagrams.



IAB = ICD = I, IBC = 2I, 
$$\theta$$
A =  $\theta$ D = 0 (A and D are fixed)

## Solution:

## • Fixed End Moments:

MFAB = 
$$-W1^2/12 = -20x4^2/12 = -26.67$$
 kNm;  
MFBA =  $W1^2/12 = 20x4^2/12 = 26.67$  kNm;

## • Slope Deflection Equations:

# • Joint Equilibrium Equations:

Joint B:

$$MBA + MBC = 0$$

$$2.333\theta B + 0.666\theta C = 80/EI$$
 --- (7)

Joint C:

$$MCB + MCD = 0$$

$$0.666\theta B + 2.333\theta C = 86.67/EI$$
 --- (8)

Equvating (7 & 8); we get

$$\theta C = -51.11/EI; \quad \theta B = 48.88/EI;$$

#### • Final Moments:

$$MAB = -2.23 \text{ kNm};$$

$$MBA = 75.55 \text{ kNm}$$
:

$$MBC = -75.55 \text{ kNm};$$

MCB = 71.09 kNm;

MCD = -71.09 kNm;

MDC = -5.56 kNm;

# • **BMD**:

