
ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8391 DATA STRUCTURES

INSERTION SORT:

 Insertion sort is a simple sorting algorithm that works the way we sort playing cards in our hands.

 Insertion sorts works by taking element from the list one by one and inserting them in their current position

into a new sorted list.

 Insertion sort is a sorting algorithm that places an unsorted element at its suitable place in each iteration.

 This is an in-place comparison-based sorting algorithm. Here, a sub-list is maintained which is always sorted.

For example, the lower part of an array is maintained to be sorted. An element which is to be 'insert'ed in this

sorted sub-list, has to find its appropriate place and then it has to be inserted there. Hence the name, insertion

sort.

 The array is searched sequentially and unsorted items are moved and inserted into the sorted sub-list (in the

same array). This algorithm is not suitable for large data sets as its average and worst case complexity are of

Ο(n2), where n is the number of items.

Example:

Consider an unsorted array as follows,

20 10 60 40 30 15

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8391 DATA STRUCTURES

Example-2

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8391 DATA STRUCTURES

Algorithm

Now we have a bigger picture of how this sorting technique works, so we can derive simple steps by which we can

achieve insertion sort.

Step 1 − If it is the first element, it is already sorted. return 1;

Step 2 − Pick next element

Step 3 − Compare with all elements in the sorted sub-list

Step 4 − Shift all the elements in the sorted sub-list that is greater than the value to be sorted

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8391 DATA STRUCTURES

Step 5 − Insert the value

Step 6 − Repeat until list is sorted

INSERTION SORT ROUTINE

Void insertionSort(int a[], int n)

{

int i, temp, j;

for (i = 1; i < n; i++)

{

temp = a[i];

for(j=i ; j>0 && a[j-1] > temp ; j--)

{

 a[j] = a[j-1];

}

a[j] = temp;

}

}

