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SYNCHRONOUS PROGRAM ORDER ON AN ASYNCHRONOUS SYSTEM 

Non deterministic programs 

The partial ordering of messages in the distributed systems makes the repeated runs 

of the same program will produce the same partial order, thus preserving deterministic 

nature. But sometimes the distributed systems exhibit non determinism: 

 A receive call can receive a message from any sender who has sent a message, if 

the expected sender is not specified.

  Multiple send and receive calls which are enabled at a process can be executed 

in an interchangeable order.

 If i sends to j, and j sends to i concurrently using blocking synchronous calls, 

there results a deadlock.

 There is no semantic dependency between the send and the immediately 

following receive at each of the processes. If the receive call at one of the 

processes can be scheduled before the send call, then there is no deadlock.

Rendezvous 

Rendezvous systems are a form of synchronous communication among an arbitrary 

number of asynchronous processes. All the processes involved meet with each other, i.e.,  

communicate synchronously with each other at one time. Two types of rendezvous 

systems are possible: 

 Binary rendezvous: When two processes agree to synchronize. 

 Multi-way rendezvous: When more than two processes agree to synchronize. 

Features of binary rendezvous: 

 For the receive command, the sender must be specified. However, multiple 

receive commands can exist. A type check on the data is implicitly performed. 

 Send and received commands may be individually disabled or enabled. A 

command is disabled if it is guarded and the guard evaluates to false. The guard 
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would likely contain an expression on some local variables. 

  Synchronous communication is implemented by scheduling messages under the 

covers using asynchronous communication. 

 Scheduling involves pairing of matching send and receives commands that are 

both enabled. The communication events for the control messages under the covers 

do not alter the partial order of the execution. 

Binary rendezvous algorithm 

If multiple interactions are enabled, a process chooses one of them and tries to 

synchronize with the partner process. The problem reduces to one of scheduling messages 

satisfying the following constraints: 

 Schedule on-line, atomically, and in a distributed manner. 

 Schedule in a deadlock-free manner (i.e., crown-free). 

 Schedule to satisfy the progress property in addition to the safety property. 

Steps in Bagrodia algorithm 

1. Receive commands are forever enabled from all processes. 

2.  A send command, once enabled, remains enabled until it completes, i.e., it is not  

possible that a send command gets before the send is executed. 

3. To prevent deadlock, process identifiers are used to introduce asymmetry to break 

potential crowns that arise. 

4. Each process attempts to schedule only one send event at any time. 

The message (M) types used are: M, ack(M), request(M), and permission(M). Execution events 

in the synchronous execution are only the send of the message M and receive of the message M. 

The send and receive events for the other message types – ack(M), request(M), and permission(M) 

which are control messages. The messages request(M), ack(M), and permission(M) use M’s 

unique tag; the message M is not included in these messages. 

(Message types) 

M, ack(M), request(M), permission(M) 
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(1) Pi wants to execute SEND(M) to a lower priority process Pj: 

Pi execute send(M) and blocks until it receives ack(M) from P j. The send event 

SEND(M) now completes. 

Any M’ message (from a higher priority processes) and request(M’) request for 

synchronization (from a lower priority processes) received during the blocking period are 

queued. 

(2) Pi wants to execute SEND(M) to a higher priority process Pj: 

(2a)   Pi seeks permission from Pj by executing send(request(M)) 

// to avoid deadlock in which cyclically blocked processes queue messages. 

(2b) while Pi is waiting for permission, it remains unblocked. 

(i) If a message M’ arrives from a higher priority process Pk, Pi accepts M’ 

by scheduling a RECEIVER(M’) event and then executes 

send(ack(M’)) to Pk. 

(ii) If a request(M’) arrives from a lower priority process Pk, Pi executes 

send(permission(M’)) to Pk and blocks waiting for the message M’.  

when M’ arrives, the RECEIVER (M’) event is executed. 

(2c) when the permission (M) arrives Pi knows partner P j is synchronized and P i 

executes send(M). The SEND(M) now completes. 

(3) request(M) arrival at Pi from a higher priority process Pj: 

At the time a request(M) is processed by pi process pi executes send(permission(M)) 

to Pj and blocks waiting for the message M. when M arrives the RECEIVE(M) event 

is executed and the process unblocks. 

(4) Message M arrival at Pi from a higher priority process Pj: 

At the time a message M is processed by Pi, proess Pi executed RECEIVE(M) (which 

is assumed to be always enabled) and then send(ack(M)) to Pj. 

(5) Processing when Pi is unblocked: 

When Pi is unblocked, it dequeues the next (if any) message from the queue and 

processes it as a message arrival (as per rule 3 or 4). 

Fig : Bagrodia Algorithm 
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GROUP COMMUNICATION 

 Group communication is done by broadcasting of messages. A message broadcast is 

the sending of a message to all members in the distributed system.  The communication may 

be 

 Multicast: A message is sent to a certain subset or a group. 

 Unicasting: A point-to-point message communication. 

The network layer protocol cannot provide the following functionalities: 

 Application-specific ordering semantics on the order of delivery of messages. 

 Adapting groups to dynamically changing membership. 

 Sending multicasts to an arbitrary set of processes at each send event. 

 Providing various fault-tolerance semantics. 

 The multicast algorithms can be open or closed group.  

Differences between closed and open group algorithms: 

  

Closed group algorithms Open group algorithms 

If sender is also one of the receiver in the 

multicast algorithm, then it is closed group 

algorithm. 

If sender is not a part of the communication 

group, then it is open group algorithm.  

They are specific and easy to implement. They are more general, difficult to design and 

expensive. 

It does not support large systems where client 

processes have short life.  

It can support large systems. 

 

CAUSAL ORDER (CO) 

 In the context of group communication, there are two modes of communication: 

causal order and total order.  Given a system with FIFO channels, causal order needs to be 

explicitly enforced by a protocol. The following two criteria must be met by a causal 

ordering protocol: 

 Safety:  In order to prevent causal order from being violated, a message M that 

arrives at a process may need to be buffered until all system wide messages sent in the 

causal past of the send (M) event to that same destination have already arrived. The 

arrival of a message is transparent to the application process. The delivery event 

corresponds to the receive event in the execution model. 
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 Liveness:  A message that arrives at a process must eventually be delivered to the 

process. 

The Raynal–Schiper–Toueg algorithm 

 Each message M should carry a log of all other messages sent causally before M’s 

send event, and sent to the same destination dest(M). 

 The Raynal–Schiper–Toueg algorithm canonical algorithm is a representative of 

several algorithms that reduces the size of the local space and message space 

overhead by various techniques. 

 This log can then be examined to ensure whether it is safe to deliver a message.  

 All algorithms aim to reduce this log overhead, and the space and time overhead of 

maintaining the log information at the processes. 

 To distribute this log information, broadcast and multicast communication is used.  

 The hardware-assisted or network layer protocol assisted multicast cannot efficiently 

provide features: 

 Application-specific ordering semantics on the order of delivery of messages. 

 Adapting groups to dynamically changing membership. 

 Sending multicasts to an arbitrary set of processes at each send event. 

 Providing various fault-tolerance semantics 

Causal Order (CO) 

An optimal CO algorithm stores in local message logs and propagates on messages, 

information of the form d is a destination of M about a messageM sent in the causal past, as 

long as and only as long as: 

 

Propagation Constraint I: it is not known that the message M is delivered to d. 

 

Propagation Constraint II: it is not known that a message has been sent to d in the causal 

future of Send(M), and hence it is not guaranteed using a reasoning based on transitivity that 

the message M will be delivered to d in CO. 
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 Fig : Conditions for causal ordering 

         The Propagation Constraints also imply that if either (I) or (II) is false, the information 

“d ∈ M.Dests” must not be stored or propagated, even to remember that (I) or (II) has been 

falsified: 

 not in the causal future of Deliverd(M1, a) 

 not in the causal future of e k, c where d ∈Mk,cDests and there is no other 

message sent causally between Mi,a and Mk, c to the same destination d. 

Information about messages: 

(i) not known to be delivered  

(ii) not guaranteed to be delivered in CO, is explicitly tracked by the algorithm using (source, 

timestamp, destination) information. 

 

          Information about messages already delivered and messages guaranteed to be delivered 

in CO is implicitly tracked without storing or propagating it, and is derived from the explicit 

information.  The algorithm for the send and receive operations is given in Fig. a) and b). 

Procedure SND is executed atomically. Procedure RCV is executed atomically except for a 

possible interruptionin line 2a where a non-blocking wait is required to meet the Delivery 

Condition. 
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Fig  a) Send algorithm by Kshemkalyani–Singhal to optimally implement causal 

ordering 

 
Fig b) Receive algorithm by Kshemkalyani–Singhal to optimally implement causal 

ordering 
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The data structures maintained are sorted row–major and then column–major: 

1. Explicit tracking: 

 Tracking of (source, timestamp, destination) information for messages (i) not known to be 

delivered and (ii) not guaranteed tobe delivered in CO, is done explicitly using the I.Dests 

field of entries inlocal logs at nodes and o.Dests field of entries in messages.  

 Sets li,aDestsand oi,a. Dests contain explicit information of destinations to which Mi,ais not 

guaranteed to be delivered in CO and is not known to be delivered. 

 The information about d ∈Mi,a .Destsis propagated up to the earliestevents on all causal 

paths from (i, a) at which it is known that Mi,a isdelivered to d or is guaranteed to be 

delivered to d in CO. 

2. Implicit tracking: 

 Tracking of messages that are either (i) already delivered, or (ii) guaranteed to be 

delivered in CO, is performed implicitly. 

 The information about messages (i) already delivered or (ii) guaranteed tobe delivered 

in CO is deleted and not propagated because it is redundantas far as enforcing CO is 

concerned.  

 It is useful in determiningwhat information that is being carried in other messages and 

is being storedin logs at other nodes has become redundant and thus can be purged.  

 Thesemantics are implicitly stored and propagated. This information about messages 

that are (i) already delivered or (ii) guaranteed to be delivered in CO is tracked 

without explicitly storing it.  

 The algorithm derives it from the existing explicit information about messages (i) not 

known to be delivered and (ii) not guaranteed to be delivered in CO, by examining 

only oi,aDests or li,aDests, which is a part of the explicit information. 

 

  Fig : Illustration of propagation constraints  
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Multicasts M5,1and M4,1  

Message M5,1 sent to processes P4 and P6 contains the piggybacked information M5,1. Dest=  

{P4, P6}.  Additionally, at the send event (5, 1), the information M5,1.Dests = {P4,P6} is also 

inserted in the local log Log5. When M5,1 is delivered to P6, the (new) piggybacked 

information  P4 ∈ M5,1 .Dests is stored in Log6  as M5,1.Dests ={P4} information about P6 ∈ 

M5,1.Dests which was needed for routing, must not be stored in Log6 because of constraint I. 

In the same way when M5,1  is delivered to process P4 at event (4, 1), only the new 

piggybacked information  P6 ∈ M5,1 .Dests is inserted in Log4 as M5,1.Dests =P6which is later 

propagated duringmulticast M4,2.  

 

Multicast M4,3 

At event (4, 3), the information P6 ∈M5,1.Dests in Log4 is propagated onmulticast M4,3only to 

process P6 to ensure causal delivery using the DeliveryCondition. The piggybacked 

information on message M4,3sent to process P3must not contain this information because of 

constraint II. As long as any future message sent to P6 is delivered in causal order w.r.t. 

M4,3sent to P6, it will also be delivered in causal order w.r.t. M5,1.  And as M5,1 is already 

delivered to P4, the information M5,1Dests = ∅ is piggybacked on M4,3 sent to P 3. Similarly, 

the information P6 ∈ M5,1Dests must be deleted from Log4 as it will no longer be needed, 

because of constraint II. M5,1Dests = ∅ is stored in Log4 to remember that M5,1 has been 

delivered or is guaranteed to be delivered in causal order to all its destinations. 

 

Learning implicit information at P2 and P3 

When message M4,2is received by processes P2 and P3, they insert the (new) piggybacked 

information in their local logs, as information M5,1.Dests =  P6. They both continue to store 

this in Log2 and Log3 and propagate this information on multicasts until they learn at events 

(2, 4) and (3, 2) on receipt of messages M3,3and M4,3, respectively, that any future message is 

expected to be delivered in causal order to process P6, w.r.t. M5,1sent toP6. Hence by 

constraint II, this information must be deleted from Log2 andLog3. The flow of events is 

given by; 

 When M4,3 with piggybacked information M5,1Dests = ∅ is received byP3at (3, 2), this 

is inferred to be valid current implicit information aboutmulticast M5,1because the log 

Log3 already contains explicit informationP6 ∈M5,1.Dests about that multicast. 

Therefore, the explicit informationin Log3 is inferred to be old and must be deleted to 

achieve optimality. M5,1Dests is set to ∅ in Log3. 
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 The logic by which P2 learns this implicit knowledge on the arrival of M3,3is 

identical.  

Processing at P6 

When message M5,1 is delivered to P6, only M5,1.Dests = P4 is added to Log6. Further, P6 

propagates only M5,1.Dests = P4 on message M6,2, and this conveys the current implicit 

information M5,1 has been delivered to P6 by its very absence in the explicit information. 

 When the information P6 ∈ M5,1Dests arrives on M4,3, piggybacked as M5,1 .Dests 

= P6 it is used only to ensure causal delivery of M4,3 using the Delivery Condition, 

and is not inserted in Log6 (constraint I) – further, the presence of M5,1 .Dests = P4  

in Log6 implies the implicit information that M5,1  has already been delivered to 

P6. Also, the absence of P4 in M5,1 .Dests in the explicit piggybacked information 

implies the implicit information that M5,1 has been delivered or is guaranteed to be 

delivered in causal order to P4, and, therefore, M5,1. Dests is set to ∅ in Log6. 

 When the information P6 ∈ M5,1 .Dests arrives on M5,2 piggybacked as M5,1. Dests 

= {P4, P6} it is used only to ensure causal delivery of M4,3  using the Delivery 

Condition, and is not inserted in Log6 because Log6 contains M5,1 .Dests = ∅, 

which gives the implicit information that M5,1 has been delivered or is guaranteed 

to be delivered in causal order to both P4 and P6.  

Processing at P1 

 When M2,2arrives carrying piggybacked information M5,1.Dests = P6 this (new) 

information is inserted in Log1. 

 When M6,2arrives with piggybacked information M5,1.Dests ={P4}, P1learns implicit 

information M5,1has been delivered to P6 by the very absence of explicit information 

P6 ∈ M5,1.Dests in the piggybacked information, and hence marks information P6 ∈ 

M5,1Dests for deletion from Log1. Simultaneously, M5,1Dests = P6  in Log1 implies 

the implicit information that M5,1has been delivered or is guaranteed to be delivered in 

causal order to P4.Thus, P1 also learns that the explicit piggybacked information 

M5,1.Dests = P4  is outdated. M5,1.Dests in Log1 is set to ∅. 

 The information “P6 ∈M5,1.Dests piggybacked on M2,3,which arrives at P 1, is 

inferred to be outdated usingthe implicit knowledge derived from M5,1.Dest= ∅” in 

Log1. 
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