
ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

SHARED MEMORY MUTUAL EXCLUSION

Shared memory model is implemented in operating systems through

semaphores monitors and atomically executable special purpose hardware.

Lamport’s bakery algorithm

 Lamport proposed the classical bakery algorithm for n-process mutual

exclusion in shared memory systems.

 This algorithm satisfies the requirements of the critical section problem

namely mutual exclusion, bounded waiting, and progress.

 All process threads must take a number and wait their turn to use a

shared computing resource or to enter their critical section.

 The number can be any of the global variables, and processes with the

lowest number will be processed first.

 If there is a tie or similar number shared by both processes, it is managed

through their process ID.

 If a process terminates before its turn, it has to start over again in the

process queue.

 A process wanting to enter the critical section picks a token number that

is one greater than the elements in the array choosing [1…n].

 Processes enter the critical section in the increasing order of the token numbers.

 In case of concurrent accesses to choosing by multiple processes, the

processes may have the same token number.

 Then, a unique lexicographic order is defined on the tuple (token, pid)

and this dictates the order in which processes enter the critical section.

(shared vars)

boolean: choosing[1…n];

integer: timestamp[1….n];

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

repeat

(1) Pi executes the following for the entry section:

(1a) choosing[i]  1;

(1b) timestamp[i] max
k1...n(timestamp[k]) + 1;

(1c) choosing[i]  0;

(1d) for count = 1 to n do

(1e) while choosing[count] do no-op;

(1f) while timestamp[count] 0 and (timestamp[count], count)

<(timestamp[i], i) do

(1g) no-op.

(2) Pi executes the critial section (CS) after the entry section

(3) Pi executes the following exit section after the CS:

(3a) timestamp[i]  0

(4) Pi executes the remainder section after the exit section until false;

until false;

Fig : Lamport’s Bakery algorithm for shared memory exclusion Mutual exclusion

 In the entry section, a process chooses a timestamp for itself, and resets it

to 0 when it leaves the exit section.

 These steps are non-atomic in the algorithm. Thus multiple processes could

be choosing timestamps in overlapping durations.

 When process i reaches line 1d, it has to check the status of each other process

j, to deal with the effects of any race conditions in selecting timestamps.

 In lines 1d–1f, process i serially checks the status of each other process j.

 If j is selecting a timestamp for itself, j’s selection interval may have

overlapped with that of i, leading to an unknown order of timestamp values.

 Process i needs to make sure that any other process j(j < i) that had begun to

execute line 1b concurrently with itself and may still be executing line 1b

does not assign itself the same timestamp.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

 If this is not done mutual exclusion could be violated as i would enter the CS,

and subsequently, j, having a lower process identifier and hence a 

lexicographically lower time stamp, would also enter the CS.

 The i waits for j’s timestamp to stabilize, i.e., choosing [j] to be set to false.

 Once j’s timestamp is stabilized, i moves from line 1e to line 1f.

 Either j is not requesting or j is requesting. Line 1f determines the relative

priority between i and j.

 The process with a lexicographically lower timestamp has higher priority and

enters the CS; the other process has to wait (line 1g).

 Thus mutual exclusion is satisfied by the algorithm.

Bounded Waiting

 Bounded waiting is satisfied because each other process j can overtake

process i at most once after i has completed choosing its timestamp.

 The second time j chooses a timestamp, the value will necessarily be larger

than i’s 

timestamp if i has not yet entered its CS.

Progress

 Progress is guaranteed because the lexicographic order is a total order and the

process with the lowest timestamp at any time in the loop is guaranteed to

enter the CS.

Improvements in Lamport’s Bakery Algorithm

i) Space complexity

 A lower bound of n registers, specifically, the timestamp array, has been

shown for the shared memory critical section problem.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

ii) Time complexity

 When the level of contention is low, the overhead of the entry section does

not scale.

 This issue is addressed his concern is addressed by fast mutual exclusion

with O(1).

 The limitation of this approach is that it does not guarantee bounded delay.

Lamport’s WRWR mechanism and fast mutual exclusion

 This algorithm illustrates an important technique – the (W − R − W – R)

sequence that is a necessary and sufficient sequence of operations to check

for contention and to ensure safety in the entry section, by employing just

two registers.

 The basic sequence of operations for W(x)–R(y)–W(y)–R(x):

1. The first operation needs to be a Write to x. If it were a Read, then all

contending processes could find the value of the variable even outside

the entry section.

2. The second operation cannot be a Write to another variable, for that

could equally be combined with the first Write to a larger variable. The

second operation should not be a Read of x because it follows Write of x

and if there is no interleaved operation from another process, the Read

does not provide any new information. So the second operation must be

a Read of another variable, say y.

3. The sequence must also contain Read(x) and Write(y) because there is

no point in reading a variable that is not written to, or writing a variable

that is never read.

4. The last operation in the minimal sequence of the entry section must be a

Read, as it will help determine whether the process can enter CS. So the last

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

operation should be Read(x), and the second-last operation should be the

Write(y).

(shared variable among the processes)

integer: x, y; // shared register initialized

boolean b[1….n]; //flags to indicate interest in critical section

repeat

(1) Pi(1 i n) executes entry section:

(1a) b[i]  true;

(1b) x  i;

(1c) if y 0 then

(1d) b[i]  false;

(1e) await y=0;

(1f) goto(1a);

(1g) y  i;

(1h) if x i then

(1i) b[i]  false;

(1j) for j = 1 to n do

(1k) await y = 0;

(1l) if y i then

(1m) await y = 0;

(1n) goto(1a);

(2) Pi(1 i n) executes entry section:

(3) Pi(1 i n) executes exit section:

(3a) y  0;

(3b) b[i]  false

Forever.

Fig : Lamport’s fast mutual exclusion algorithm

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

Hardware Support for Mutual Exclusion

 Hardware support can allow for special instructions that perform two or more

operations atomically.

 Two such instructions, Test &Set and Swap are defined and implemented.

 The atomic execution of two actions, a Read and a Write operation can

simplify a mutual exclusion algorithm.

(shared variables among the processes accessing each of the different object types)

register: Reg  initial value; // shared register initialized

(local variables)

integer: old  initial value; // value to be returned

(1) Test & Set(Reg) return value:

(1a) old  Reg;

(1b) Reg  1;

(1c) return(old).

(2) Swap(Reg, new) return value:

(2a) old  Reg;

(2b) Reg  new;

(2c) return(old).

Fig : Definitions for Test&Set, Swap operations

(shared variables)

register: Reg  false; // shared register initialized

(local variables)

integer: blocked  0 // variable to be checked before entering CS

repeat

(1) Pi executes the following for the entry section:

(1a) blocked  true;

(1b) repeat

(1c) blocked  Swap(reg, blocked);

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

(1d) until blocked = false;

(2) Pi executes the critical section (CS) after the entry section

(3) Pi executes the following exit section after the CS:

(3a) Reg  false;

(4) Pi executes the remainder section after the exit section

until false;

Fig : Code for Swap operation

(shared variable)

register: Reg  false; // shared register initialized

boolean: waiting[1…n];

(local variables)

integer: blocked  initial value // value to be checked before // entering CS

repeat

(1) Pi executes the following for the entry section:

(1a) waiting[i]  true;

(1b) blocked  true;

(1c) repeat waiting[i] and blocked do

(1d) blocked  Test&Set(Reg);

(1e) waiting[i]  false;

(2) Pi executes the critical section (CS) after the entry section

(3) Pi executes the following exit section after the CS:

(3a) next  (i + 1) mod n;

(3b) while next 1 and waiting [next] = false do

(3c) next  (next + 1) mod n;

(3d) if next = i then

(3e) Reg  false;

(3f) else waiting[j]  false;

(4) Pi executes the remainder section after the exit section

until false;

Fig : Code for Test & Set operation

	Progress
	Improvements in Lamport’s Bakery Algorithm
	ii) Time complexity
	Lamport’s WRWR mechanism and fast mutual exclusion
	Fig : Lamport’s fast mutual exclusion algorithm
	Fig : Definitions for Test&Set, Swap operations
	Fig : Code for Swap operation
	Fig : Code for Test & Set operation

