Security standards

Security standards define the processes, procedures, and practices necessary for implementing a security program. These standards also apply to cloud-related IT activities and include specific steps that should be taken to ensure a secure environment is maintained that provides privacy and security of confidential information in a cloud environment. Security standards are based on a set of key principles intended to protect this type of trusted environment. Messaging standards, especially for security in the cloud, must also include nearly all the same considerations as any other IT security endeavor.

Security (SAML ,OAuth, OpenID, SSL/TLS)

A basic philosophy of security is to have layers of defense, a concept known as *defense in depth*. This means having overlapping systems designed to provide security even if one system fails. An example is a firewall working in conjunction with an intrusion-detection system (IDS). Defense in depth provides security because there is no single point of failure and no single-entry vector at which an attack can occur. No single security system is a solution by itself, so it is far better to secure all systems. This type of layered security is precisely what we are seeing develop in cloud computing. Traditionally, security was implemented at the endpoints, where the user controlled access. An organization had no choice except to put firewalls, IDSs, and antivirus software inside its own network. Today, with the advent of managed security services offered by cloud providers, additional security can be provided inside the cloud.

4.4.1 Security Assertion Markup Language (SAML)

SAML is an XML-based standard for communicating authentication, authorization, and attribute information among online partners. It allows businesses to securely send assertions between partner organizations regarding the identity and entitlements of a principal. The Organization for the Advancement of Structured Information Standards (OASIS) Security Services Technical Committee is in charge of defining, enhancing, and maintaining the SAML specifications.

SAML is built on a number of existing standards, namely, SOAP, HTTP, and XML. SAML relies on HTTP as its communications protocol and specifies the use of SOAP (currently, version 1.1). Most SAML transactions are expressed in a standardized form of XML. SAML assertions and protocols are specified using XML schema. Both SAML 1.1 and SAML 2.0 use digital signatures (based on the XML Signature standard) for authentication and message integrity. XML encryption is supported in SAML 2.0, though SAML 1.1 does not have encryption capabilities. SAML defines XML-based assertions and protocols, bindings, and profiles. The term SAML Core refers to the general syntax and semantics of SAML assertions as well as the protocol used to request and transmit those assertions from one system entity to another. SAML protocol refers to what is transmitted, not how it is transmitted. A SAML binding determines how SAML requests and responses map to standard messaging protocols. An important (synchronous) binding is the SAML SOAP binding.

SAML standardizes queries for, and responses that contain, user authentication, entitlements, and attribute information in an XML format. This format can then be used to request security information about a principal from a SAML authority. A SAML authority, sometimes called the asserting party, is a platform or application that can relay security information. The relying party (or assertion consumer or requesting party) is a partner site that receives the security information.

The exchanged information deals with a subject's authentication status, access authorization, and attribute information. A subject is an entity in a particular domain. A person identified by an email address is a subject, as might be a printer.

SAML assertions are usually transferred from identity providers to service providers. Assertions contain statements that service providers use to make access control decisions. Three types of statements are provided by SAML: authentication statements, attribute statements, and authorization decision statements. SAML assertions contain a packet of security information in this form:

<saml:Assertion A...>

<Authentication>

</Authentication> <Attribute>

</Attribute>

<Authorization>

•••

</Authorization>

</saml:Assertion A>

The assertion shown above is interpreted as follows:

Assertion A, issued at time T by issuer I, regarding subject

S, provided conditions C are valid.

Authentication statements assert to a service provider that the principal did indeed authenticate with an identity provider at a particular time using a particular method of authentication. Other information about the authenticated principal (called the authentication context) may be disclosed in an authentication statement. An attribute statement asserts that a subject is associated with certain attributes. An attribute is simply a name-value pair. Relying parties use attributes to make access control decisions. An authorization decision statement asserts that a subject is permitted to perform action A on resource R given evidence E. The expressiveness of authorization decision statements in SAML is intentionally limited.

A SAML protocol describes how certain SAML elements (including assertions) are packaged within SAML request and response elements. It provides processing rules that SAML entities must adhere to when using these elements. Generally, a SAML protocol is a simple request-response protocol. The most important type of SAML protocol request is a query. A service provider makes a query directly to anidentity provider over a secure back channel. For this reason, query messages are typically bound to SOAP. Corresponding to the three types of statements, there are three types of SAML queries: the authentication query, the attribute query, and the authorization decision query. Of these, the attribute query is perhaps most important. The result of an attribute query is a SAML response containing anassertion, which itself contains an attribute statement.

4.4.2 Open Authentication (OAuth)

OAuth is an open protocol, initiated by Blaine Cook and Chris Messina, to allow secure API authorization in a simple, standardized method for various types of web applications. Cook and Messina had concluded that there were no open standards for API access delegation. The OAuth discussion group was created in April 2007, for the small group of implementers to write the draft proposal for an open protocol. DeWitt Clinton of Google learned of the OAuth project and expressed interest in supporting the effort. In July 2007 the team drafted an initial specification, and it was released in October of the same year. OAuth is a method for publishing and interacting with protected data. For developers, OAuth provides

users access to their data while protecting account credentials. OAuth allows users to grant access to their information, which is shared by the service provider and consumers without sharing

all of their identity. The Core designation is used to stress that this is the baseline, and other extensions and protocols can build on it. By design, OAuth Core 1.0 does not provide many desired features (e.g., automated discovery of endpoints, language support, support for XML-RPC and SOAP, standard definition of resource access, OpenID integration, signing algorithms, etc.). This intentional lack of feature support is viewed by the authors as a significant

benefit. The Core deals with fundamental aspects of the protocol, namely, to establish a mechanism for exchanging a user name and password for a token with defined rights and to provide tools to protect the token. In fact, OAuth by itself *provides no privacy at all* and depends on other protocols such as SSL to accomplish that.

4.4.30penID

OpenID is an open, decentralized standard for user authentication and access control that allows users to log onto many services using the same digital identity. It is a single-sign-on (SSO) method of access control. As such, it replaces the common log-in process (i.e., a log-in name and a password) by allowing users to log in once and gain access to resources across participating systems. The original OpenID authentication protocol was developed in May 2005 by Brad Fitzpatrick, creator of the popular community web site Live-Journal. In late June 2005, discussions began between OpenID developers and other developers from an enterprise software company named Net-Mesh. These discussions led to further collaboration on interoperability between OpenID and NetMesh's similar Light-Weight Identity (LID) protocol. The direct result of the collaboration was the Yadis discovery protocol, which was announced on October 24, 2005.

The Yadis specification provides a general-purpose identifier for a person and any other entity, which canbe used with a variety of services. It provides a syntax for a resource description document identifying services available using that identifier and an interpretation of the elements of that document. Yadis discovery protocol is used for obtaining a resource description document, given that identifier. Together these enable coexistence and interoperability of a rich variety of services using a single identifier. The identifier uses a standard syntax and a well- established namespace and requires no additional namespace administration infrastructure.

An OpenID is in the form of a unique URL and is authenticated by the entity hosting the OpenID URL. The OpenID protocol does not rely on a central authority to authenticate a user's identity. Neither the OpenID protocol nor any web sites requiring identification can mandate that a specific type of authentication be used; nonstandard forms of authentication such as smart cards, biometrics, or ordinary passwords are allowed. A typical scenario for using OpenID might be

something like this: A user visits a web site that displays an OpenID log-in form somewhere on the page. Unlike a typical log-in form, which has fields for user name and password, the OpenID log-in form has only one field for the OpenID identifier (which is an OpenID URL). This form is connected to an implementation of an OpenID client library.

A user will have previously registered an OpenID identifier with an OpenID identity provider. The user types this OpenID identifier into the OpenID log-in form. The relying party then requests the web page located at that URL and reads an HTML link tag to discover the identity provider service URL. With OpenID 2.0, the client discovers the identity provider service URL by requesting the XRDS document (also called the Yadis document) with the content type **application/xrds+xml**, which may be available at the target URL but is always available for a target XRI.

There are two modes by which the relying party can communicate with the identity provider: **checkid_immediate** and **checkid_setup**. In **checkid_immediate**, the relying party requests that the provider not interact with the user. All communication is relayed through the user's browser without explicitly notifying the user. In **checkid_setup**, the user communicates with the provider server directly using the same web browser as is used to access the relying party site. The second option is more popular on the web.

To start a session, the relying party and the identity provider establish a shared secret— referenced by an associate handle—which the relying party then stores. Using **checkid_setup**, the relying party redirects the user's web browser to the identity provider so that the user can authenticate with the provider. The method of authentication varies, but typically, an OpenID identity provider prompts the user for a password, then asks whether the user trusts the relying party web site to receive his or her credentials and identity details. If the user declines the identity provider's request to trust the relying party web site, the browser is redirected to the relying party with a message indicating that authentication was rejected.

The site in turn refuses to authenticate the user. If the user accepts the identity provider's request to trust the relying party web site, the browser is redirected to the designated return page on the relying party web site along with the user's credentials. That relying party must then confirm that the credentials really came from the identity provider. If they had previouslyestablished a shared secret, the relying party can validate the shared secret received with the credentials against the one previously stored. In this case, the relying party is considered to be stateful, because it stores the shared secret between sessions (a process sometimes referred to as

persistence). In comparison, a stateless relying party must make background requests using the **check_authentication** method to be sure that the data came from the identity provider.

4.4.4 SSL/TLS

Transport Layer Security (TLS) and its predecessor, Secure Sockets Layer (SSL), are cryptographically secure protocols designed to provide security and data integrity for communications over TCP/IP. TLS and SSL encrypt the segments of network connections at the transport layer. Several versions of the protocols are in general use in web browsers, email, instant messaging, and voice-over-IP. TLS is an IETF standard protocol which was last updated in RFC 5246.

The TLS protocol allows client/server applications to communicate across a network in a way specifically designed to prevent eavesdropping, tampering, and message forgery. TLS provides endpoint authentication and data confidentiality by using cryptography. TLS authentication is one-way—the server is authenticated, because the client already knows the server's identity. In this case, the client remains unauthenticated. At the browser level, this means that the browser has validated the server's certificate—more specifically, it has checked the digital signatures of the server certificate's issuing chain ofCertification Authorities (CAs).

Validation does not identify the server to the end user. For true identification, the end user must verify the identification information contained in the server's certificate (and, indeed, its whole issuing CA chain). This is the only way for the end user to know the "identity" of the server, and this is the only way identity can be securely established, verifying that the URL, name, or address that is being used is specified in the server's certificate. Malicious web sites cannot use the valid certificate of another web site because they have no means to encrypt the transmission in a way that it can be decrypted with the valid certificate.

Since only a trusted CA can embed a URL in the certificate, this ensures that checking the apparent URL with the URL specified in the certificate is an acceptable way of identifying the site.TLS also supports a more secure bilateral connection mode whereby both ends of the connection can be assured that they are communicating with whom they believe they are connected. This is known asmutual (assured) authentication. Mutual authentication requires the TLS client-side to also maintain a certificate.

TLS involves three basic phases:

- 1. Peer negotiation for algorithm support
- 2. Key exchange and authentication
- 3. Symmetric cipher encryption and message authentication

During the first phase, the client and server negotiate cipher suites, which determine which ciphers are used; makes a decision on the key exchange and authentication algorithms to be used; and determines the message authentication codes. The key exchange and authentication algorithms are typically public key algorithms. The message authentication codes are made up from cryptographic hash functions. Once these decisions are made, data transfer may begin.

