DESIGN FOR COUNTER FORT RETAINING WALL

1.5 Design For Counter Fort Retaining Wall For Toe Design

Example:5

Design a counter fort retaining wall based on the following data Height of wall above ground level $=6 \mathrm{~m}$

$$
\mathrm{SBC} \text { of soil }=160 \mathrm{KN} / \mathrm{m}^{\wedge} 2
$$

Angle of internal friction $\Phi=33^{\circ}$

$$
\text { Density of soil }=16 \mathrm{KN} / \mathrm{m}^{\wedge} 3
$$

$$
\text { Spacing of counter forts } \quad=3 \mathrm{~m} \mathrm{c} / \mathrm{c}
$$

Adopt M20 grade concrete and Fe415 HYSD bars

Solution:

Step:1 Dimension of retaining wall

$$
\begin{aligned}
\quad \text { (a) Depth of foundation } & =\mathrm{P} / \mathrm{W}(1-\sin \phi / 1+\sin \phi)^{\wedge} 2 \\
& =160 / 16(1 / 3)^{\wedge} 2 \\
& =1.11 \mathrm{~m} \\
\text { Provide depth of foundation } & =1.2 \mathrm{~m} \\
\text { (b) Overall height of wall ,H } & =6+1.2 \\
\qquad & =7.2 \mathrm{~m} \\
\text { (c) Thickness of base slab } & =2 \mathrm{LH} \mathrm{~cm} \\
& =2 \times 3 \times 7.2 \\
& =43.2 \mathrm{~cm}
\end{aligned}
$$

Provide 450 mm thick base slab

$$
\begin{array}{cl}
\text { Base width } & =0.6 \mathrm{H} \text { to } 0.7 \mathrm{H} \\
(0.6 \times 7.2) & =4.32 \mathrm{~m} \\
(0.7 \times 7.2) & =5.04 \mathrm{~m} \\
\text { Adopt base width } & =4.5 \mathrm{~m} \\
\text { Toe projection } & =(1 / 4) \times 4.5 \\
& =1.1 \mathrm{~m}
\end{array}
$$

Step:2 Stability calculations
(a) Find load

$$
\begin{aligned}
\mathrm{W} 1 & =\mathrm{bx} \mathrm{dx} \gamma \mathrm{c} \\
& =0.22 \times 6.75 \times 24 \\
& =35.64 \mathrm{KN} \\
\mathrm{~W} 2 & =\mathrm{bx} \mathrm{dx} \gamma \mathrm{c} \\
& =0.45 \times 4.5 \times 24 \\
& =48.60 \mathrm{KN} \\
\mathrm{~W} 3 & =\mathrm{b} \times \mathrm{dx} \gamma \mathrm{~s} \\
& =3.28 \times 6.75 \times 16 \\
& =354.24 \mathrm{KN} \\
\text { Total } & =\mathrm{W} 1+\mathrm{W} 2+\mathrm{W} 3 \\
& =35.64+48.60+354.24 \\
& =438.49 \mathrm{KN}
\end{aligned}
$$

(b) Find moment

$$
\begin{aligned}
\text { M1 } & =\text { W1 X length } \\
& =35.64 \times 3.39
\end{aligned}
$$

$$
\begin{aligned}
& =120.80 \mathrm{KNm} \\
\mathrm{M} 2 & =\mathrm{W} 2 \mathrm{X} \text { length } \\
& =48.60 \times 2.25 \\
& =109.35 \mathrm{KNm} \\
\mathrm{M} 3 & =\mathrm{W} 3 \mathrm{X} \text { length } \\
& =354.24 \times 1.64 \\
& =580.95 \mathrm{KNm} \\
\mathrm{M} 4 & =\mathrm{Moment} \text { of earth pressure } \\
\mathrm{ka} \quad & \mathrm{~Wh} \wedge 3 / 6 \\
1 / 3 \quad & =\left(16 \times 7.2^{\wedge} 3\right) / 6 \\
\mathrm{M} 4 & =331.77 \mathrm{KNm}(\text { moment at base })
\end{aligned}
$$

Total moment,

$$
\begin{aligned}
\mathrm{M} & =\mathrm{M} 1+\mathrm{M} 2+\mathrm{M} 3+\mathrm{M} 4 \\
& =120.80+109.35+580.95+331.77 \\
\mathrm{M} & =1142.87 \mathrm{KNm}
\end{aligned}
$$

Distance of the point of application of the resultant from point ' a ' is,

$$
\begin{aligned}
\mathrm{Z} & =\sum \mathrm{M} / \sum \mathrm{W} \\
& =1142.87 / 438.49 \\
& =2.66 \mathrm{~m}
\end{aligned}
$$

Eccentricity,
e $\quad=\mathrm{Z}-\mathrm{b} / 2$
$=2.66-4.5 / 2$
$=0.41 \mathrm{~m}$
but,
$(b / 6)=4.5 / 6$

$$
=0.75 \mathrm{~m}
$$

$$
\mathrm{e}<(\mathrm{b} / 6)
$$

Maximum and minimum pressure at the base are given by,

$$
\begin{aligned}
\sigma \quad & =\sum \mathrm{W} / \mathrm{b}[1 \pm 6 \mathrm{e} / \mathrm{b}] \\
\sigma \max & =438.49 / 4.5[1+(6 \mathrm{x} 0.41) / 4.5] \\
& =150 \mathrm{KN} / \mathrm{m}^{\wedge} 2 \\
\sigma \min & =438.49 / 4.5[1-(6 \mathrm{x} 0.41) / 4.5] \\
& =45 \mathrm{KN} / \mathrm{m}^{\wedge} 2
\end{aligned}
$$

The maximum intensity of pressure does not exceed the permissible value of $160 \mathrm{KN} / \mathrm{m}^{\wedge} 2$

Step:3 Design of toe slab

$$
\begin{aligned}
\text { W1 } & =\text { B X DX unit weight of concrete } \\
& =126.6 \times 1 \\
& =126.6 \mathrm{KN} \\
\text { W2 } & =\text { B X DX unit weight of soil } \\
& =0.5 \times 1 \times 23.4 \\
& =11.7 \mathrm{KN}
\end{aligned}
$$

Find moment,

M1 =W1 X Length
$=126.6 \mathrm{x} 0.5$
$=36.30 \mathrm{KNm}$

M2 =W2 X length
$=11.7 \times 0.67$
$=7.84 \mathrm{KNm}$

Total moment,

$$
\begin{aligned}
\mathrm{M} & =\mathrm{M} 1+\mathrm{M} 2 \\
& =63.30+7.84 \\
& =71.14 \mathrm{KNm}
\end{aligned}
$$

Deduct for self weight of toe slab,

$$
\begin{aligned}
\mathrm{W} 3 & =1 \mathrm{X} 0.45 \mathrm{X} 24 \\
& =10.8 \mathrm{KN}
\end{aligned}
$$

Deduct for weight of soil above toe slab,

Moment deduction, | W 4 | $=0.75 \mathrm{X} 1 \mathrm{X} 16$ |
| ---: | :--- |
| | $=12 \mathrm{KN}$ |
| | $=10.8 \times 0.5$ |
| | $=5.40 \mathrm{KNm}$ |
| Wd 2 | $=\mathrm{W} 4 \times$ length |
| | $=12 \times 0.5$ |
| | $=6 \mathrm{KNm}$ |
| Md | $=\mathrm{Md} 1+\mathrm{Md} 2$ |
| | $=5.40+6.00$ |
| | $=11.4 \mathrm{KNm}$ |

Maximum working moment in toe slab,

$$
\begin{aligned}
\mathrm{M} & =\mathrm{M}-\mathrm{Md} \\
& =71.14-11.4 \\
& =59.74 \mathrm{KNm} \\
& =1.5 \times \mathrm{M}
\end{aligned}
$$

Forced moment,
Mu

$$
\begin{aligned}
& =1.5 \times 59.74 \\
& =89.61 \mathrm{KNm}
\end{aligned}
$$

Effective depth of toe slab $=400 \mathrm{~mm}$
Reinforcement in toe slab,

$$
\begin{aligned}
\mathrm{Mu} & =(0.87 \text { fy Ast d })[(1-\text { Ast fy }) / \mathrm{bd} \text { fck }] \\
89.61 \times 10^{\wedge} 6 & =(0.87 \times 415 \text { Astx } 400)[(1-415 \text { Ast }) /(1000 \times 400 \times 20)] \\
\text { Ast } & =644 \mathrm{~mm}^{\wedge} 2
\end{aligned}
$$

Provide 12 mm dia bars at $150 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

$$
\begin{aligned}
\text { Ast } & =754 \mathrm{~mm}^{\wedge} 2 \\
\text { Distribution bars } & =0.0012 \times 1000 \times 450 \\
& =540 \mathrm{~mm}^{\wedge} 2
\end{aligned}
$$

Provide 10 mm dia bars at $280 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ on both the faces

$$
\text { Ast }=561 \mathrm{~mm}^{\wedge} 2
$$

Step:4 Design of counter forts
Thickness provide at top $=220+220=440 \mathrm{~mm}$
Thickness of counterfort $=440 \mathrm{~mm}$

Max working moment in counter forts is

$$
\begin{aligned}
\mathrm{M} & =\mathrm{ka} \times \mathrm{Wh}^{\wedge} 3 / 6 \times \mathrm{L} \\
& =1 / 3 \times\left(16 \times 6.75^{\wedge} 3\right) / 6 \times 3 \\
& =820.12 \mathrm{KNm} \\
& =\mathrm{Mu} \times 1.5 \\
& =820.12 \times 1.5
\end{aligned}
$$

$$
=1230 \mathrm{KNm}
$$

Reinforcement at bottom of counterforts is computed using the relation,

$$
\begin{aligned}
\left(1230 \times 10^{\wedge} 6\right) & =(0.87 \times 415 \text { Astx } 440)[(1-415 \text { Ast }) /(440 \times 4400 \times 20) \\
\text { Ast } & =800 \mathrm{~mm}^{\wedge} 2
\end{aligned}
$$

But, minimum reinforcement as per IS code, 456:2000,

$$
\begin{aligned}
\text { Ast } & =0.85 \mathrm{bd} / \mathrm{fy} \\
& =(0.85 \mathrm{x} 440 \times 4400) / 415 \\
& =3965 \mathrm{~mm}^{\wedge} 2
\end{aligned}
$$

Provide 5 bars of 32 mm dia

$$
\text { Ast }=4020 \mathrm{~mm}^{\wedge} 2
$$

Step:5 Curtailment of bars

$$
\begin{array}{ll}
\text { h1 } & =\text { depth at which } 1 \text { bar can be curtailed, then } \\
(5-1) / 5 & =\text { h1/6.75^2 } \\
\text { h1 } & =6 \mathrm{~m} \text { from top } \\
\text { h2 } & =\text { depth at which } 2 \text { bars are curtailed, } \\
(5-2) / 5 & =\text { h2/6.75^2 } \\
\text { h2 } & =5.2 \mathrm{~m} \text { from top } \\
\text { h3 } & =\text { depth at which } 3 \text { bars are curtailed, } \\
(5-3) / 5 & =\text { h3/6.75^2 } \\
\text { h3 }
\end{array}
$$

Remaining two bars are taken right upto the top.
Step:6 Connection between counterforts and upright slab
Considering bottom 1 m height of up right slab,
pressure on this strip $=36 \mathrm{KN} / \mathrm{m}^{\wedge} 2$

Total working load pressure transferred to the counterfort for

$$
\begin{aligned}
1 \mathrm{~m} \text { height } & =36(3-0.44) \\
& =91.8 \mathrm{KN} \\
\text { Factored force } & =1.5 \times 91.8 \\
& =138 \mathrm{KN}
\end{aligned}
$$

Reinforcement required per metre height

	$=138 \times 10^{\wedge} 3 /(0.87 \times 415)$
	$=382 \mathrm{~mm}^{\wedge} 2$
Minimum reinforcement	$=0.0012 \times 10^{\wedge} 3 \times 440$
	$=528 \mathrm{~mm}^{\wedge} 2$
Spacing of 10 mm dia bars	$=(78.5 \times 1000) / 52.8$
	$=148.6 \mathrm{~mm}$

This amount of reinforcement is provide as two legged horizontal lines of 10 mm dia at 280 mm c/c.

Step:7 Connection between counterforts and heal slab

Working tension transferred in 1 m width of the counterforts near heal end

$$
\begin{aligned}
& \mathrm{a} \quad=73.80(3-0.44) \\
& =189 \mathrm{KN} \\
& \text { Factored tension }=1.5 \times 189 \\
& =283.5 \mathrm{KN}
\end{aligned}
$$

Reinforcement required in 1 m width

$$
=\left(283.5 \times 10^{\wedge} 3\right) /(0.87 \times 415)
$$

$$
=785 \mathrm{~mm}^{\wedge} 2 / \mathrm{m}
$$

Spacing of 10 mm dia two legged links

$$
\begin{aligned}
& =\left(2 \times 78.5 \times 10^{\wedge} 3\right) / 785 \\
& =200 \mathrm{~mm}
\end{aligned}
$$

Provide 10 mm dia two legged links at $200 \mathrm{~mm} \mathrm{c} / \mathrm{c}$.

