UNIT-III FREE VIBRATION

3.1 INTRODUCTION:

When a system is subjected to an initial disturbance and then left free to vibrate on its own,
the resulting vibrations are referred to as free vibrations .Free vibration occurs when a mechanical
system is set off with an initial input and then allowed to vibrate freely. Examples of this type of
vibration are pulling a child back on a swing and then letting go or hitting a tuning fork and letting
it ring. The mechanical system will then vibrate at one or more of its "natural frequencies" and
damp down to zero.

3.2 BASIC ELEMENTS OF VIBRATION SYSTEM:

m Mass or Inertia
m Springiness or Restoring element

m Dissipative element (often called damper) External

excitation

3.3 CAUSES OF VIBRATION:

Unbalance: This is basically in reference to the rotating bodics. The uneven distribution of
mass in a rotating body contributes to the unbalance. A good example of unbalance related

vibration would be the —vibrating alert|| in our mobile phones. Here a small

amount of
unbalanced weight is rotated by a motor causing the vibration which makes the mobile phone to
vibratc. You would have cxperienced the same sort of vibration occurring in your front loaded

washing machines that tend to vibrate during the —spinning|| mode.

Misalignment: This is an other major cause of vibration particularly in machines that are

driven by motors or any other prime movers.

Bent Shaft: A rotating shaft that is bent also produces the the vibrating effect since it losses
it rotation capability about its center.

Gears in the machine: The gears in thc machinc always tend to producc vibration, mainly
due to their meshing. Though this may be controlled to some extent, any problem in the gearbox
tends to get enhanced with ease.

Bearings: Last but not the Icast, here is a major contributor for vibration. In majority of the
cases every initial problem starts in the bearings and propagates to the rest of the members of the
machine. A bearing devoid of lubrication tends to wear out fast and fails quickly, but before this is



noticed it damages the remaining components in the machine and an initial look would seem as if
something had gone wrong with the other components leading to the bearing failure.

3.3.1 Effects of vibration:

(a)Bad Effects:

The presence of vibration in any mechanical system produces unwanted noise, high
stresses, poor reliability, wear and premature failure of parts. Vibrations arc a great source of
human discomfort in the form of physical and mental strains.

(b)Good Effects:
A vibration does useful work in musical instruments, vibrating screens, shakers, relive
pain in physiotherapy.

3.4 METHODS OF REDUCTION OF VIBRATION:

-unbalance is its main cause, so balancing of parts is necessary.
-using shock absorbers.
-using dynamic vibration absorbers.
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-providing the screens (if noise is to be reduced)

3.5 TYPES OF VIBRATORY MOTION:

O Free Vibration
O Forced Vibration

3.6 TERMS USED VIBRATORY MOTION:
(a)Time period (or)period of vibration:

It is the time taken by a vibrating body to repeat the motion itself.time period is usually
expressed in seconds.

(b) Cycle:
It is the motion completed in one time period.

(c) Periodic motion:
A motion which repeats itself after equal interval of time.



(d)Amplitude (X)
The maximum displacement of a vibrating body from the mean position.it is usually
expressed in millimeter.

(e) Frequency (f)
The number of cycles completed in one second is called frequency

3.7 DEGREES OF FREEDOM:

The minimum number of independent coordinates required to specify the motion of a system
at any instant i1s known as D.O.F of the system.

3.7.1 Single degree of freedom system:

The system shown in this figure is what is known as a Single Degree of Freedom system. We
usc the term degree of freedom to refer to the number of coordinates that are required to specify
completely the configuration of the system. Here, if the position of the mass of the system is
specified then accordingly the position of the spring and damper are also 1dentified. Thus we need
just one coordinate (that of the mass) to specify the system completely and hence it is known as a
single degree of freedom system.

3.7.2 Two degree of freedom system:




A two degree of freedom system With reference to automobile applications, this is referred as
—quarter car|| model. The bottom mass refers to mass of axle, wheel etc

components which are

below the suspension spring and the top mass refers to the mass of the portion of the car and
passenger. Since we need to specify both the top and bottom mass positions to completely specify
the system, this becomes a two degree of freedom system.

38 TYPES OF VIBRATORY MOTION:

The following types of vibratory meotion are important from the subject point of view :

1. Free or natural vibrarions. When no cxternal force acts on the body, after giving it an
1utial displacement. then the body 15 said to be uader free or nataral vibrations. Lhe frequency of
the Iree vibrathons s called free or natural frequincy.

1. Forced vibrations. When the body vibrates uader the ifluence of exrernal force. then
the body 15 said (o be uuder forced vibrations. The exiemul lorce spplied o the body 15 a penodic
disiimbing fnee credted by unbalance. The vibrabons have (he same frequency as the apphed lorce.
Note : When the frequency of the external force is same as that of the natural vibrations, resonance takes
place.

3. Damped vibrations. When theve 15 4 reduchon msmphiude over every cycle ol vibrahon,
the motion is said 1o be damped vibrarton. This is dve 1o the fact that a certain amount of energy
possessed by the vibrating svstem is always dissiparad in overcoming frictional resistances to the
motion.

Types of Vibration:

(a)Longitudinal vibration (b)Transverse Vibration ( ¢)Torsional Vibration.
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B = Mean position : 4 and C = Extreme positions,

(¢) Longitudinal vibrations, (&) Transverse vibralions, (¢) Torsioual vibralions

Longitudinal Vibration:




When the particles of the shaft or disc moves parallel to the axis of the shaft, then the
vibrations known as longitudinal vibrations.

Free undamped longitudinal vibrations:

When a body is allowed to vibrate on its own, after giving it an initial displacement, then
the ensuring vibrations are known as free or natural vibrations. When the vibrations take place
parallel to the axis of constraint and no damping is provided, then it is called free undamped
longitudinal vibrations.

3.9 NATURAL FREQUENCY OF FREE UNDAMPED LONGITUDINAL VIBRATION:

3.9.1 Eq uilib riu m m et h od or Newt on’ s met h od :
Consider a constramli (7.¢. spring) ol neglinnble mass wm an unslraied posiion,

Lel s — Slilluess ol the coustraiut. It s the [orce required (o produce
unit displacement in the direction of vibration. It is usually
expressed in N/m,

m= Mass of the body suspended from the constramt i kg,

W — Weiglit ol the body n1 newtons — n.g.




8 — Statie dezleetion of the spring in mcetres due to weight W7

newlims, and
x — hsplacemenl given to the body by the exlemsl foree. wmelres.
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Namral treqmency of tree longimdinal vibrations
In the equilibvian posithon. ss shown m Fig. 23.2 (5), the gravnational pull W — ey s
balanced by a force of spring, such thar F=5.5.
Swice e sy s now displaced Fom s equihbown position by o distisnce x, as shown m

Fig (o). anid s then reledsed, therelore alter e [

Reslonng lorce =W —ni0+3)=W —vdH—rx
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B I

at
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We know that the fundamental equarion of simple harmonic mation is
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Comparing equations (/i) and (/v), we have
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Taking the valie of g as 9.81 nv/s® and & in metres,
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Nate : The value of static deflection @ may be found cut from the given conditions of the problem For
long:tudina! vibrations. it may be obtzined by the relztion,

1 "9 Bl _ 0.198%

Strezs , W“ / g ey
o 25 o wL=N or L% o
Strain A4 & ' LA
where 0 — Slatw delechion ¢ o extension or vompression of (e coustruanl,

L oad attached 1o the fres evd of cor=mmml.
! = Lzngzh of the constrain:,
£ = Youno s modning for the consraint, and

A — Cross-secrionzl area ot the constraint.




3.9.2 Energy Method
In free vibrations, no energy is transferred into the system or from the system. Therefore,
the total energy (sum of KE and PE)is constant and is same all the times.

We know that the kinetic
energy 1s due to the motion of the
body and the potential energy 1s
with respect to a certan datum
position which 1s equal to the
amount of work required to move
the body from the datum position.
In the casce of wvibratiens. the
datum position 15 the mean or
equilibrium position at which the
potential energy of the body or the
systemi 15 zero.

In the free vibrations, no

. 3 This industrial compressor uses compressed air to power heavy-
sueigy  inaxteered 1o the system duty construction tools Compressors are used for jobs, stich
or from the system. Therefore the o0 1 oaiing up concreta or paving, dniling, pie driving, sand-
summation of kinetic energy and blasting and tunnelling. A compressor works on the same prin-
potential energy must be a ciple as a pump. A piston moves backwards and forwards in-
constant quantity which is same at  side a hollow cylinder, which compresses the air and forces i

all the times. In other words, o a hollow chamber A pipe or hose connectad to the cham-
ber channels the compressed air to the tools
d _
7 (K.E+PE)=0 Note - This picture is given as additional information and

15 not a direct examp'e of the current chapter
We kaow that kinetic en-

SIgy.
]
K..E.:lxm i—t
2 dt
and potential energy, PE. =[ 2 +:'t ]x = %x:.xz
(+* PE. = Mean force = Dasplacement )
dli__faY 1 al 4
arl2 \ar) T2 T
1 ’x 1 dv
—xmxlx—tx S+ XX 2xX—=0
2 dr 4 2
) Y
or mxj f+:J=0 or ‘:,xﬁ-i)u'zﬁ (Same as before)
t* t* m

The time period and the natural frequency may be obtained as discussed i the previous
method.



3.9.3 Rayleigh’s method

In this method, the maximum kinetic energy at mean position is made equal to the maximum potential

energy at the extreme position.
3.10 EQUIVALENT STIFFNESS OF SPRING.

(1) Springs in series
(2) Springs in parallel
(3) Combined springs
(4) Inclined springs

S.Ne. Iype of beam Deflection (8)
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SNo. Type of beam Deflection (8)
14

> . = 5 wl
8 Simply supported beam with z uniformly D "—'mx? (ar the centre)
distr:butcd load of w per nnit length.
w/unit length
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3.11 DAMPING:

It 1s the resistance to the motion of a vibrating body. The vibrations associated with this resistance
arc known as damped vibrations.

3.11.1 Types of damping:

(1) Viscous damping

(2) Dry friction or coulomb damping (3) Solid damping or structural
damping

(4) Slip or interfacial damping.

3.11.2 Damping Coefficient:



The damping force per unit velocity is known as damping coetficient.
3.11.3 Equivalent damping coefficient:

Dampers may be connected either in series or in parallel to provide required damping.
3.12 DAMPED VIBRATION:

The vibrations associated with this resistance are known as damped vibrations.

3.12.1 Damping factor:

Damping factor can be defined as the ratio of actual damping coefficient to critical damping
coefficient.

The ratio of the actual damping coefficient (¢) to the critical damping coefficient (c_) 1s
known as damping facter or damping ratio. Mathematically:.
c c

Damping factor =—= ekl G228
¢, 2mm,

The damping factor 1s the measure of the relative amount of damping 1n the existing system
with that necessary for the critical damped system.

&

Thus mainly three cases arise depending on the value of
E 71 Uherdamped Systern

E=1o Crhcully dampea Systern

& 1= Underdamped Sysiem

£ 1 < . : }
When “the” system undergoes aperiodically decaying motion and hence such systems are said to be
Overdamped Systems.

An cxamplc of such a system is a door damper = when we open a door and cnter a room, we want the door to
gradually close rather than exhibit &: 7 oscillatory motion and bang into the person entering the room
bchind us! So the damper is designed such that
Critically damped motion ( & = la hypothetical borderline case separating oscillatory decay from a periodic
decay) I the fastest decaying aperiodic motion.



When — =< 1|, x(t) is a damped sinusoid and the system exhibits a vibratory motion whose
amplitude keeps diminishing. This is the most common vibration case and we will spend most of our time
studying such systems. These are referred to as Underdamped systems.

3.12.2 Logarithmic decrement:

It is defined as the natural logarithm of ratio of any two successive amplitudes of an

under damped system. It is a dimensionless quantity.
=
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3.13 TRANSVERSE VIBRATION:

When the particles of the shaft or disc moves approximately perpendicular to the axis  of
the shaft, then the vibrations known as transverse vibrations.



Concider a shaft of negl:gitle mass, whose one
encl is fixed and the ather =nd carries a body ot weighr

AAAN
=

W, as shown :n Fig. 25 3. Maan position o _3
Lzt s = Sutiness of shatt. ‘st "
& = Static deflection duc to Bodilon sitet ___i_____i___
weight of the body. time 1 e =
« — Displaceinent of body how l
mean position aftar time & mi{
= Mass of hody = W/z uf

2 i ; 1 Fig. 25.3 Naztural frequency of free
As discussed in the previous articls, . ) qu i
transverse vibrations.

Restoring foree —  sx cwwdi)

(i)

and accelerating force =mx
dr-

Tomating equations (/) and (/7). the equation of motion hecomes
2 4

X
mx = =5 or mx

dr- at-

+axr=1U

3
d:.- 5 J i
: +i><x =) . - {Same as befor=
de= ™
Tlence. the time period and the natural frequency of the transverse vibrations are same as
that of longitudinal vibrations, Therefore

o
i > m
lime penod, Ty~ Eﬂ,f—;

audd natural lequeney,  Jp ——-= ! {_ J—
! ix
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Nare : The thape of the curve. into which the vibranng chaft deflects. is identical with the sraric deflection
curve of a cantilever bsam loaded at the =nd [t has been proved it rhe t=xt book on 3rencth of Matzriale.
that the static deflectior of a cantilever beam loadsd ar the fres end 15

& ”'1'3 -
0 ——— (in merres)
sEt
wheis W= Load at (he fiee end, 1m newlous,

7= Length of tha shaft or beam m metres,
E = Younz's modulus for the matcrial of the shaft or bzar :n
N’ and
1 — Momen! of inerliz of the shafl or beam m w”,

3.13.1 Whirling speed of shaft:

The speed, at which the shaft runs so that the additional deflection of the shaft from the axis of
rotation becomes infinite, is known as critical or whirling speed.



No shaft can ever be perfectly straight or perfectly balanced. When an element of mass is a distance
from the axis of rotation, centrifugal force, will tend to pull the mass outward. The elastic
properties of the shaft will act to restore the —straightness||. If the frequency of

rotation is
equal to one of the resonant frequencies of the shaft, whirling will occur. In order to save the machine from

failure, operation at such whirling speeds must be avoided.
» f—1te

When a shafll rotates, 1t way well go mio tuansverse
oscillations If the shaft is out of balance. the resulting
centrifugal force will induce the shaft to vibrate. When the
shaft rotates at a spead equal to the natural frequency of
transverse oscillations, this vibratton becomes large and
shows np as a whirling ot the shatt. Tt also ocenrs ar multiples
of the resonant spead. This can be very damaging to heavy
rotary machines such as turbine generator sets and the system
st be carelully balanced to reduce this effeel and designed
(v have a natmal fequencey different to the speed of rotation,
When starling or stopping such waclinery, the entical speeds
must be avoided to prevent damage to the bearings and
turbine blades. Consider a weightless shaft as shown with a

mass M at the muddle Suppose the centre ot the mass 15 not J
on the centre hne.

The whirling frequency of a symmetric cross section of a given length between two points is given by:

EI
N =94.25
\/m L? vpMm

Where E = young's modulus, I = Second moment of area, m = mass of the shaft, L= length of

the shaft between points

A shaft with wcights added will have an angular velocity of N (rpm) cquivalent as follows:

A
o TR N2 U N
a'\ N J\ A 4\ B :\ E
3.14 TORSIONAL VIBRATION:

When the particles of the shaft or disc move in a circle about the axis of the shaft, then the
vibrations known as tensional vibration
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- ‘ - = Mean position
g Position after
. time (t)

Natural frequency of
free torsional vibrations.

Let 8 = Angular displacement of the shaft
from mean position after time ¢
in radians,

m = Mass of disc in kg,
I = Mass moment of inertia of disc

n kg-m2 = m.l,
= Radius of gyration in metres.

g = Torsional stiffness of the shaft in
N-m.



Restoring force = g8 - (D)

2
and accelerating force =% g 29 .. (@)
dt
Equating equations (/) and (i7), the equation of
motion 1s

2
Ix 4 ’9 =—qg0
dat”
20
or Ix—s+g0=0
at”
de q
+—=x0=0 i
3 1 ... (did)
The fundamental equation of the sumple harmonic motion 1s
2 -
—d ?+.0)2_1'=0 e < 0
dr”

Comparing equations (77f) and (iv),

o=y
I

»
Time period. tp = =5 i .

" q

1 i

and natural frequency | fa=—=o=4l5
t, 2m\I



The value of the torsional stiffness g may be obtained from the torsion equation,
T . CP L. 5
— R or T Se———

J- 1§ 0 I
- €.J . g
/ s 'l R
where ¢ = Modulus of ngidity for the shaft matenial,
J = Polar moment of inertia of the shaft cross-section.
T 4 :
=3‘,)‘d . d 15 the diameter of the shaft. and
! = Length of the shaft.
3.14.1 Torsional vibration of a single rotor system:
W2 have already discussed that for a shaft fixed at A ®
one 2nd and carrying a rotor at the free 2nd as shown in big. ’;:-
the natural frequency of torsional vibration. A B
; - | ———————n
o o A
L JE 1 jer Z -
= VE 2 Il SRR

Cu
0
P e ‘ o , 4 Frez torsioral vibratiors
where C = Modulus of rigidiry for shaft material, of & single rotor system.
J = Polar moment of inertiz of shatt

= d4

32
d — Diameter of shaft,
| = Length of shait,
m = Mass of rotor,

k = Radius of gyration of retor, and
I = Mass moment of inertia of rotor = m.k>

A little consideration will show that the amplitude of vibration is zero at A and maximum
at B, as shown in Fig. It may be noted that the point or the section of the sha’t whose
amplitude of torsional vibration is zero, is known as mede. In other words, at the node, the shaft
remains unaffected by the vibration.

3.14.2 Torsional vibration of a two rotor system:



Consider a two rotor system as shown i Fig. It
consists of a shaft with two rotors at its ¢nds. In this system, G
the torsional vibrations occur only when the two rctors A and « ! >
B move in opposite directions ie. if 4 meves in anticlockwise
direction then B moves in clockwise direction at the same
instant and vice versa. It may be noted that the two rotors must () Q
have the same frequency. ' ;

We see from Fig. that the node lies at point .
This point can be safely assumed as a fixed end and the shaft
may be considered as two seperate shafts N P and N Q each
fixed to onc of its ends and carrying rotors at the free ends.

Let [ = Length of shaft, Fig Free torsional vidra-
/, = Length of part NP j.e. distance fiars of a two roior system
of node from rotor A,
I, = Length of part NQ, i.e. distance
of node from rotor B,
1, = Mass momert of inertia of rotor A,
Iy = Mass moment of inertia of rotor B,
d = Dhameter of shaft,
1= Polar moment of inertia of shaft, and
€ = Modulus of rigidity for shaft malenal.
Naturzl frequency of torsional vibratien for rotor A,

P = :
Tan 71} -
® 2 A o

and natural frecuency of torsional vibration for rotor B.

f AT
sl 2 qIBJB iee 'll')
Since Jfoa =Jrg therefore
| [ $484 § L [EF
2 Ylady 2 'dfn-fn oy iy =1y Ip (|
I51g
In et
+A
We zlso know that
[ 1y Iy v 5w (1)

3.14.3 Torsionally equivalent shaft:



we have assumed that the shaft is of uniform diameter. But in
actual practice, the shaft mayv have variable diamcier for different lengths Such a shaft may,
theoretically, be replaced by an cquivalen: shaft of uniform diamcter.

Consider a shaft of varying diameters as snown in Fig. (a). Let this shatt 1s replaced
by an equivalent shall of aniform diamelter o and fength 7 as shown in Fig. {(h).These lwao shalls

must have the same tolal angle ol twist when equal opposing lorques T are apphed af ther opposile
ends.

Lot d,, d, and d; = Diameters for the lengths / , /, and /, respectively,
{+ 2 and 3 = Angle of twist for the lengths /,, /, and /, respectively,

-

= Total angle of wwist, and

J1.J3 and J3 = Polar moment of inertia for the shafts of diameters d,, d, and
d, respectively.

/l:J’T Tda f,aT "'4(—_\\

Sy S "

‘ 5 . Y

d1 dz d; d=dl

5 ¥ . - T, .
) -|1—!—-|4—.f,—r

O O O O
(a) Shaft of varying diameters. (k) Torsionally egquivalent shafi,
Fig 24.8

Since the total angle of twist of the shaft is equa’ to the sum of the angle of twists of

different lengths, therefore
1 2 3

ri T4 Th Th
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3.15 SOLVED ROBLEMS

1.A machine of mass 75 kg is mounted on springs and is fitted with a dashpot to damp
out
the amplitude of vibration diminishes from 384 mm to 6.4 mm in two
oscillations. Assuming that the damping force varies as the velocity, d¢
resistance of the dash-pot at unit velocity ; 2. vibration to the frequen
undamped vibration ; and 3. damped vibration.

I 2 I, I

o 4 —f 4 _— 2 ) T 4
e d }‘){(” 32“{1 1_’{h’})

B s o de

i L 5 Iy
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In actual calculations, it is assuined that the diameter d of the equivelent shafl s equal
one of the diameter of the actual shaft. Let us assume that d = dl.

{ h Iy g
(d )! (d) ! (d> ! (dy )
4 / |
i
- F & b n 2
d> a3

I'his expression gives the length [ of an 2quivalent shaft.
vibrations. There are three springs each of stiffness 10 N/mm and it is found that

1. the
the ratio of the frequency of the damped the periodic time of the

Solution. Given : m =75 kg ; s = 10 N/mm = 10 x10° N/m ; x1 = 38.4 mm = 0.0384 m ;
x3= 6.4 mm = 0.0064 m
Since the stiffness of each spring is 10 x 10° N/m and there are 3 springs, therefore total
stiffncss,

5=3x10x10° = 30x10% N/m
We know that natural circular frequancy cf moticn,

5 ‘33>:1'33

W, =, |—=,———=20 rad's
"Am ¥ 75

1. Resistance of the dashpot at unit velocity



Lut ¢ = Resistunce of the dusiiput in nevitons al uni velocitly 1 i
N/m's,
X, — Amglitude after ore complete oscillation in metres and
x; = Amplitude after two complete oscillations in metres.

N X

a Z
We know that ) ;
X :
> i : w s Lt
{ o k’; ?.'2 \_' .\2 J‘,': XE |
L) % L ]
% -
v [ 003847 _
ar e R :l - =& 45
.\'2 .1'3 ﬂ.mﬁ-’l
We also know that
log [ | n
Yy —_— g ——
G O [l
\ s \J[U.'ﬂ) —d
2.2. Ratio of the frequency of the damped vibration to the frequency of undamped vibration
; e 0}
Let fa = Frequency cf damped vibration = —,)i
l-n
2 . Wy
£p = Frequency ol undumped vibrution = N
2 b I 2
f @; 2n ® (w,)" —a (20)" —(2.5)
e e =J - = 0.99 Ans.
g 2K @, O, (n, 0
3. Peviodic ume of damped vibration
We know that perioc.c time ot damged vibration
Zn 2n n 0475 A
= 5 = = =0.32 5 Ans.
7 5 9 FTRT Ty T )
L T P N [P
2. The mass of a single degree damped vibrating system is 7.5 kg and makes 24 free

oscillations in 14 seconds when disturbed from its equilibrium position. The amplitude of
vibration reducces to 0.25 of its initial valuc after five oscillations. Determine @ 1. stiffncss
of the spring, 2. logarithmic decrement, and 3. damping factor, i.e. the ratio of the system
damping to critical damping.

Solution. Given : m = 7.5 kg

Since 24 oscillations arc madc in 14 scconds, thercfore frequency of free vibrations,
£ =244 =17

and o, = 2% i, =2xx1.7=10.7 rad’s
1. Stittness of the spifng
Let s — Stiftress of the spr.ng in N/m.,

We know thr (@, )% =s/m or s=(m,)>m=(107,%75 = RR0 N/m Ans.
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We know that a=c!'2m

c—ax2m-28 ¥ 2x 75— 120 N'm/s Ans.

Y. Danmping factar

Let ¢ = Damping coefficien: for the actual system, and
¢, - Namping coefficient for the critical dampedd system. i
We know that logarithmic decrement (§ ],
axaz X2R 28
028 = = = - : b~ &
um,,l B
o =@ =132
v ] 25 X ) (

\Wo krow that logasizhmic d-:cerenL.

lug, =lvg,1.32 =0.28 Ans.
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Ry a® %305

(VK4 = % Sauaring bath sifrs)
114 5-a"

RUTT U4 2'= 345 A ar a =421 m a=I(.4/6
We know that a-cl/2m cr c—ax2m-0476 %2 «7.5-72Nms Ans.
and Ce—2mw, —2x7.5x10.7 — 160.5 N/mv's Ans

Damiping facter = ¢/e. = 7.2/ 1605 = 0.045 Ans

3(i) The measurements on a mechanical vibrating system show that it has a mass of 8 kg

and that the springs can be combined to give an equivalent spring of stiffness &
N/mm. If the vibrating system have a dashpot attached which exerts a force of
when the mass has a velocity of 1 m/s, find : 1. critical damping coefficient, 2.
logarithmic decrement, and 4. ratio of two consecutive amplitudes.

damping factor, 3.

Solution. Given : m =8 kg ; 5 = 5.4 N/mm = 5400 N/m

1. Crticad damping covlliciem

We know that critical damping coefficient,

. &
o =Lmw, = dmij—- =2x8

|
it = 416 N/uvs Ans.




Since the force exerted by dashpot is 40 N, and the mass has a velocity of 1 m/s , therefore
Damping cocfficient (actual),

2. Damping facter

We know that damping factor

F40
—— ——— = 0.096 Ans.
¢, 416
¢ =40 N/m/s
3. Logarithaue decrement
We <now L. logarithmic decrement,
: 2rc 2rmx 40
0= —— = — 0.6 Ans.
Jile) = 4 (116;° - (10}°
4. Rario af mva consecurive amplitid s
Let x, anc x = Magnitude of two consecutive amplitudes,

We know thar Ingarithmic decrement,

6= 1ug[ o ] or ~& == (27)'" = 1.82 Ans
X R

3 (1) An instrument vibrates with a frequency of 1 Hz when there is no damping. When the

damping is provided, the frequency of damped vibrations was observed to be 0.9 Hz. Find 1.

the damping factor, and 2. logarithmic decrement.

Solution. Given : f,=1 Hz ; /4= 0.9 Hz
1. Damping factor
Let m=  Mass of the instrument in kg,
c= Damping coefticient or
damping force per unit
velocity in N/m/s, and
= Critical damping cocfficicnt
in
N/m/s.
W know that natural circular frequency of undamped vibrations,



o, — 21X f, — 2rx1—6.284 rad's
and circular frequency of camped vibrations,
Wy =2xx [y =¢nx0Y=5.60 rad's

Wa alsa know that circular freruency of damped vihrations (@),

5.66=1/(wy)? 2% =+/(6281)2 &2

L

)

Syuaring but sides

-

= |

(5.60)% = (6.284)° - a° or 22 = 37
kS £=T5 of a=2.74
Ve know hat, a=gim ur c=ax2m=2.74 x Zm =548 m N
We know (iat 2 2m=2.74 48 m N/
and G~ 2oy — 2= 6,281 — 12,068 i Ninv's

Dannping lacior,
¢l ¢ — 2 A8m/ 12,008 i — U 430 Ans.

4(i) A coil of spring stiffness 4 N/mm supports vertically a mass of 20 kg at the free
end. The motion is resisted by the oil dashpot. It is found that the amplitude at the
beginning of the fourth cycle is 0.8 times the amplitude of the previous vibration.
Determine the damping force per unit velocity. Also find the ratio of the frequency of
damped and undamped vibrations.

Solution. Given : s =4 N/mm = 4000 N/m ; m = 20 kg

Damping force per unit velocity

Let ¢ = Damping force in newtons per unit velocity é.e. in N/m/s x,

= Amplitudc at the beginning of the third cycle,
x»-1 = Amplitude at the beginning of the fourth cycle = 0.8 x,

We know that natural circular frequency of motion,



5 _ (4000

= =14.14 rad’s
" 210

U’n=1‘

[ : 2
and log, | —i | ax———
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f
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: =g =
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n 21

logal.2b - ax—== or 0.223=ax———m—x
J200-4% J200— 27

Squaring both sidas

¥

a’ x4n’ - 303a

0.05= — = -
200—2* 200-a*
0.05 » Z00 - 0.05 a° = 39,54 or 3955a°=10
) a=10/3855=025 or a=0.5
Wa know that a—-clim

c—axZ2m—05 %2 « 20 - 20 N/m/s Ans.

Ratio of the frequencies

Lat fy, = Frequency of damped vibrations =

q
2n

),
f.» = Frequency of undampec vibratiors = ?_11:

(14.19)% = (0.3)*
14.14

I 0w 7 g .

fo 2r o, @, V ),
2 2
- ( =y in,)? -2

=0.999 Ans.



4(ii) Derive an expression for the natural frequency of single degrees of freedom system.

We know that the kinetic energy 1s due to the motion of the body and the potential energy
is with respect to a certain datum position which i1s equal to the amount of work required to
move the body from the datum position. In the case of vibrations, the datum position is the
mean or equilibrium position at which the potential energy of the body or the system 1s zero.

In the free vibrations, no energy is transferred to the system or from the system.
Therefore the summation of kinetic energy and potential energy must be a constant quantity
which is same at all the times. In other words,

e - 'Jt:. F.+ i J. |L_: — [I G ;
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We know that the andarments:] seplion ol simple harmeome maotion is

Py

X i
-w¢ x—10

2

dr

Comparing equations,
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laking the value of g as .81 més™ and & in metres.,

1 981 0.4985
28 Ja

I",; Hz
5. A vertical shaft of 5 mm diameter is 200 mm long and is supported in long bearings at
its ends. A disc of mass 50 kg is attached to the centre of the shaft. Neglecting any increase

in stiffness due to the attachment of the disc to the shaft, find the critical speed of rotation



and the maximum bending stress when the shaft is rotating at 75% of the critical speed.
The centre of the disc is 0.25 mm from the geometric axis of the shaft. E = 200 GN/m>.

Solution. Given : d =5mm=0.005m ;/=200mm=02m ;m=50kg; e=0.25 mm=
0.25 % 10 *m ; E =200 GN/m?= 200 x 10° N/m?

Critical speed of rotation

We know that moment of inertia of the shaft,

I= :[ o - R (0005 =307<10"2m!?
4 64

0 D
Since the shaft is supported in long bearings, it is assumed to be fixed at both ends. We
know that the static deflection at the centre of the shaft due to a mass of 50 kg,

WP 50%9.51(0.2)°
192E1  192x200%10° %30 7x 10 22

—333%10 °m

(. W=mp
We know that critical spead of rotztion (or natural frequency of transverse vibrations),
y _ 0.4985

N, = —p——— = §.64 1.p.5 AS
¥3.33x10~

Maximum bending stress

Let 0 = Maximum bending stress in N/m?, and

N = Speed of the shaft = 75% of critical speed =0.75 N,. . . (Given)

When the shaft starts rotating, the additional dynamic load (1) to which the shaft is
subjected, may be obtained by using the bending equation,

\ o
M.z oo M-

A )

Wec know that for a shaft fixced at both ends and carrying a point load (W) at the centre, the
maximum bending moment

W 1
T g =
g
s B O (e y = udl2)
R d.f? ' = .
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pedef= S a8310 3=3327 xl
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We kuow that

e e

V= -

- ? N

[ L 5 [ 3 |_1 . (Substituzing @, — N axd w— V)
0] Ear



3327 x10 2= T023X10° _ 5335103
4 -"\:1 \l" i

= % |
0.1..' v
\ i

a=032>1072 /3327 107" =0.0062 x10° N/ m® -..{ Taking + ve sign)
- 96.2 » 10° Nan™ = Y5 2 MN/m’ Aus.

6.(i) A shaft 50 mm diameter and 3 metres long is simply supported at the ends and
carries three loads of 1000 N, 1500 N and 750 N at 1 m, 2 m and 2.5 m from the left

support. The Young's modulus for shaft material is 200 GN/m?. Find the frequency of
transverse vibration.

Solution. Given :*>= 200 x ¢ =50 mm = 0.05 m ;10° N/m*/ =3 m, W1=1000 N ; W>= 1500 N ;
Wi=750N;

E =200 GN/m

The shaft carrying the loads is shown in Fig. 23.13

We know that moment of inertia of the shaft,

1 -2 wat - i0.05)4 - 0.307 x10-5 m?
64 64

and the szatc deflection du2 to a point load W,

& H_gj?}lbz
YA/

1000 N IGNON 750N

PO P

Fig. 23 13

Staric deflecticn due to a load of 1000 N,

10001° x 2° .
§ = s —=724x10% m
3x200x10° x0.307T %107 x3
,..(llerea=1m and b= 2 m}
Similurly, static deflection due o a lead 07 1300 N,
~ 1500%2- % |*
320010 x0.307x107° %3

—10.86>107 m

(Here a2 m and n = | m)
and static deflection cdue ¢ a load of 750 N.

TP SN2y 02 ,
(JU‘(IZJ) ”. e I : L g'llet—j i
3<200=10 <0307 =10 " %3

v o Qlere a— 25 m, and & — 0.5 m)

Oy —




We know that frequency of transverse vidration,

; 0.4985 0.4985
Jn T ~ ~ oy = #
V81 =8 +85  \7.24%107 +10.85x107° +2.12x1073
_DASSS ..
= 01122 = 3.5 Hz Ans.

6.(ii) Calculate the whirling speed of a shaft 20 mm diameter and 0.6 m long
carrying a mass of 1 kg at its mid-point. The density of the shaft material is 40 Mg/m?, and
Young’s modulus is 200 GN/m?, Assume the shaft to be freely supported.

Solution. Giver - /=20 =002 m  i=06m ¢ =1kg F =40 ).-13"1113
=40 % 10° p/m® = 40« |0F kg/m® 7 =200 GN/mé = 200 x 10° N/m?

ITe shall s shuwn in Fig 2515

We krow that moment of inertia of the shaft, 1k
I' ’,.w.a ke /)
t=—xd'=2_(002*m IBLCASQRESSRSES]]
b4 k4 ' l
- 7805 » 107 - Gl m i
Since the density of shat materizl is 40 % 10 kg/m®, Fig. 23.15

therefore mass of the shaft cer metre length,
tik, — Ared x Jength x densily —*%tU.IJZ}: KIxADx1® =125 kg'm

Ws know that static deflaction due to I kg of mass at the centre,

We 1%9.81(0.6)°

B - - _ ==28x10" m
13E] 48 200% 10" x .85 x 11~
and starie deflection dur o moass of the shafi
=l 25519 Bt e .
Ao Juzm= 3 l_.BxlflJ,Sl(E,b_l =020 m
384LT BB Z0X10" X BLO 10T
I'requency of transverse vibration,
¢ 0.4935 0.4985
ar T
[ . B 5 0.133%10 °
S — Rx10~" + = .
Y \/? a7
1J.49585 .
=———— =433 Hz
11.52x10
Let N = Whirling speed of a shaft.

We know that whirling speed of a shaf: in r.p s, is equal to the frcquency of transvorse
vihration in Hz , therefore
N.=433 rps.= 435 x i) = 2588 r.p.m. Ans

3.16 REVIEW QUESTIONS
1. When a body is subjected to transverse vibrations, the stress induced in a body will be ?
2. In under damped vibrating system, if xi and x> are the successive values of the amplitude

on the same side of the mean position, then the logarithmic decrement 1s equal to?

3. Discuss the effect of inertia of the shaft in longitudinal and transverse vibrations?



4. How the natural frequency of torsional vibrations for a two rotor system is obtained?
5. . At a nodal point in a shaft, the amplitude of torsional vibration is?

3.17 TUTORIAL PROBLEMS

1. A beam of length 10 m carries two loads of mass 200 kg at distances of 3 m from each end
together with a central load of mass 1000 kg. Calculate the frequency of transverse
vibrations.

Neglect the mass of the beam and take 7= 10’ mm®* and E = 205x10° N/mm°. [Ans.
13.8 Hz]

2.A vertical shaft 25 mm diameter and 0.75 m long is mounted in long bearings and carrics
a pulley of mass 10 kg midway between the bearings. The centre of pulley is 0.5 mm
from the axis of the shaft. Find (a) the whirling speed, and () the bending stress in the
shaft, when it is rotating at 1700 r.p.m. Neglect the mass of the shaft and £ = 200 GN/m”.
[Ans. 3996 r.p.m ; 12.1 MN/m?|

3.A shaft of 100 mm diameter and 1 metre long is fixed at one end and the other end carries
a flywheel of mass 1 tonne. The radius of gyration of the flywheel is 0.5 m. Find the
frequency of torsional vibrations, if the modulus of rigidity for the shaft material is 80
GN/m?. [Ans. 8.9 Hz]

4.The flywheel of an engine driving a dynamo has a mass of 180 kg and a radius of gyration
of 30 mm. The shaft at the flywheel end has an effective length of 250 mm and is 50 mm
diameter. The armature mass 120 kg and its radius of gyration is 22.5 mm. The dynamo
shaftis 43 is mmdiameter and mm effective length. Calculate the position of
node and frequency of 200 torsional oscillation. C = 83 kKN/mm®[Ans. 205 mm
from flywheel, 218 Hz]

5. The two rotors A and B are attached to the end of a shaft 500 mm long. The mass of the
rotor A is 300 kg and its radius of gyration is 300 mm. The corresponding values of the
rotor B are 500 kg and 450 mm respectively. The shaft is 70 mm in diameter for the
first 250 mm ; 120 mm for the

next 70 mm and 100 mm diameter for the remaining length. The modulus of rigidity for
the shaft material is 80 GN/m?. Find : 1. The position of the node, and 2. The frequency
of torsional vibration. [Ans. 225 mm from A ; 27.3 Hz]



