
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS8451-DESIGN AND ANALYSIS OF ALGORITHMS

2.THE MAXIMUM-FLOW PROBLEM

Maximum Flow Problem

Problem of maximizing the flow of a material through a transportation network

(e.g., pipeline system, communications or transportation networks)

Formally represented by a connected weighted digraph with n vertices numbered from

1 to n

with the following properties:

• Contains exactly one vertex with no entering edges, called the source (numbered1)

• Contains exactly one vertex with no leaving edges, called the sink (numbered n)

• Has positive integer weight uijon each directed edge (i.j), called the edge capacity,

indicating the upper bound on the amount of the material that can be sent from i to

j through this edge.

• A digraph satisfying these properties is called a flow network or simply an network.

Example of Flow Network Node (1) = source Node(6) = sin

Definition of a Flow

A flow is an assignment of real numbers xijto edges (i,j) of a given network that satisfy the

following:

• flow-conservation requirements

The total amount of material entering an intermediate vertex must be equal to

the total amount of the material leaving the vertex

• capacity constraints

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS8451-DESIGN AND ANALYSIS OF ALGORITHMS

0 ≤ xij≤ uijfor every edge (i,j) E

Flow value and Maximum Flow Problem

Since no material can be lost or added to by going through intermediate vertices of the

network, the total amount of the material leaving the source must end up at the sink:

∑ x1j = ∑xjn

j: (1,j) є E j: (j,n) є E

The value of the flow is defined as the total outflow from the source (= the total inflow into

the sink). The maximum flow problem is to find a flow of the largest value (maximum flow)

for a given network.

Example 1

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS8451-DESIGN AND ANALYSIS OF ALGORITHMS

 Augmenting path: 1‹2 ‹3 ‹6

 xij/uij

Augmenting path: 1 ‹4 ‹3›2 ‹5 ‹6

Example 1 (maximum flow)

Finding a flow-augmenting path

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS8451-DESIGN AND ANALYSIS OF ALGORITHMS

To find a flow-augmenting path for a flow x, consider paths from source to sink in the

underlying undirected graph in which any two consecutive vertices i,j are either:

• connected by a directed edge (i to j) with some positive unused capacity rij=

uij–xij- known as forward edge(‹)

OR

• connected by a directed edge (j to i) with positive flow xji

– known as backward edge(›)

If a flow-augmenting path is found, the current flow can be increased by r units by

increasing xijby

r on each forward edge and decreasing xji by r on each backward edge,

 where

r = min {rijon all forward edges, xjion all backward edges}

• Assuming the edge capacities are integers, r is a positive integer

• On each iteration, the flow value increases by at least1

• Maximum value is bounded by the sum of the capacities of the edges leaving

the source; hence the augmenting-path method has to stop after a finite

number of iterations

• The final flow is always maximum; its value doesn’t depend on a sequence of

augmenting paths used

Performance degeneration of the method

• The augmenting-path method doesn’t prescribe a specific way for generating

flow- augmenting paths

• Selecting a bad sequence of augmenting paths could impact the method’s

efficiency.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS8451-DESIGN AND ANALYSIS OF ALGORITHMS

 1.Example

1→2→4→3

1→4←2→3 V=1

V=2

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS8451-DESIGN AND ANALYSIS OF ALGORITHMS

…

V=2U

Requires 2U iterations to reach maximum flow of value 2U

Shortest-Augmenting-Path Algorithm

Generate augmenting path with the least number of edges by BFS as follows.

Starting at the source, perform BFS traversal by marking new (unlabeled) vertices with two

labels:

• first label – indicates the amount of additional flow that can be brought

from the source to the vertex being labeled

• second label – indicates the vertex from which the vertex being labeled was

reached, with “+” or “–” added to the second label to indicate whether the

vertex was reached via a forward or backward edge

Vertex labeling

• The source is always labeled with∞,-

• All other vertices are labeled as follows:

o If unlabeled vertex j is connected to the front vertex i of the traversal queue

by a directed edge from i to j with positive unused capacity rij = uij –

xij(forward edge), vertex j is labeled with lj,i
+, where lj= min{li,rij}

o If unlabeled vertex j is connected to the front vertex i of the traversal queue

by a directed edge from j to i with positive flow xji(backward edge), vertex

j is labeled lj,i
-, where lj= min{li,xji}

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS8451-DESIGN AND ANALYSIS OF ALGORITHMS

• If the sink ends up being labeled, the current flow can be augmented by the amount

indicated by the sink’s first label.

• The augmentation of the current flow is performed along the augmenting path

traced by following the vertex second labels from sink to source; the current flow

quantities are increased on the forward edges and decreased on the backward edges

of this path.

• If the sink remains unlabeled after the traversal queue becomes empty, the

algorithm returns the current flow as maximum and stops.

Example: Shortest-Augmenting-Path Algorithm

Queue: 1 2 4 3 5 6

‡ ‡ ‡ ‡

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS8451-DESIGN AND ANALYSIS OF ALGORITHMS

Augment the flow by 2 (the sink’s first label) along the path 1‹2‹3‹6

Queue: : 1 4 3 2 5 6

‡ ‡ ‡ ‡ ‡

Augment the flow by 1 (the sink’s first label) along the path 1‹4‹3›2‹5‹6

Queue: 14

 ‡‡

No augmenting path (the sink is unlabeled) the current flow is maximum

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS8451-DESIGN AND ANALYSIS OF ALGORITHMS

Definition of a Cut

Let X be a set of vertices in a network that includes its source but does not include its sink,

and let X, the complement of X, be the rest of the vertices including the sink. The cut

induced by this partition of the vertices is the set of all the edges with a tail in X and a

head in X.

Capacity of a cut is defined as the sum of capacities of the edges that compose the cut.

• →e’ll denote a cut and its capacity by C(X,X) and c(X,X)

• Note that if all the edges of a cut were deleted from the network, there would

be no directed path from source to sink

• Minimum cut is a cut of the smallest capacity in a given network

Examples of network cuts

If X = {1} and X = {2,3,4,5,6}, C(X,X) = {(1,2), (1,4)}, c =5

If X ={1,2,3,4,5} and X = {6}, C(X,X) = {(3,6), (5,6)}, c =6

If X = {1,2,4} and X ={3,5,6}, C(X,X) = {(2,3), (2,5), (4,3)}, c = 9

Max-Flow Min-Cut Theorem

1. The value of maximum flow in a network is equal to the capacity of its minimum cut

2. The shortest augmenting path algorithm yields both a maximum flow and a minimum

cut:

• Maximum flow is the final flow produced by the algorithm

• Minimum cut is formed by all the edges from the labeled vertices to

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS8451-DESIGN AND ANALYSIS OF ALGORITHMS

unlabeled vertices on the last iteration of the algorithm.

• All the edges from the labeled to unlabeled vertices are full, i.e., their flow

amounts are equal to the edge capacities, while all the edges from the

unlabeled to labeled vertices, if any, have zero flow amounts on them.

ALGORITHM Shortest Augmenting Path(G)

//Implements the shortest-augmenting-path algorithm

//Input: A network with single source 1, single sink n, and positive integer capacities

uij on

// its edges (i, j)

//Output: A maximum flow x

assign xij= 0 to every edge (i, j)in the network

label the source with ∞, − and add the source to the empty queue Q

while not Empty(Q) do

i ›Front(Q); Dequeue(Q)

for every edge from i to j do //forward edges

if j is unlabeled

rij›uij−xij

if rij>0

lj›min{li, rij}; label j with lj, i +

Enqueue(Q, j)

for every edge from j to i do //backward edges

if j isunlabeled

if xji>0

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS8451-DESIGN AND ANALYSIS OF ALGORITHMS

lj›min{li, xji}; label j

with lj, i− Enqueue(Q,

j)

if the sink has been labeled

//augment along the augmenting path found

j ›n //start at the sink and move backwards using second labels

while j ≠ 1 //the source hasn’t been reached

if the second label of

vertex jisi+

xij›xij+ln

else //the second label of

vertex j is i− xij›xij−ln

j ›i; i ›the vertex indicated by i’s

second label erase all vertex labels except

the ones of the source reinitialize Q with

the source

return x //the current flow is maximum

Time Efficiency

• The number of augmenting paths needed by the shortest-augmenting-path algorithm

never exceeds nm/2, where n and m are the number of vertices and edges, respectively.

• Since the time required to find shortest augmenting path by breadth-first search is in

O(n+m)=O(m) for networks represented by their adjacency lists, the time efficiency of

the shortest-augmenting-path algorithm is in O(nm2) for this representation.

• More efficient algorithms have been found that can run in close to O(nm) time, but

these algorithms don’t fall into the iterative-improvement paradigm.

