
Rohini college of Engineering and technology

16
CS8392 Object Oriented Programming

2.4. FINAL CLASS AND METHODS
The final keyword can be usedin three places

• For declaring variables

• For declaring the methods

• For declaring the class

Final Variables and Methods
A variable can be given as final.If a specific variable is declared as final then it cannot be changed

again. The final variable is constant always.

For example: final int a=10;

The final keyword can also be useful to the method.The method using final keyword cannot be
overridden.

Java program which makes use of the keyword final for declaring the method
public class FinalVariableDemo

{
final int number=10; //final keyword used in variable
public void showFinalValue()

{

System.outprintin("Final variable value:”+number);

}
public static void main(String args[])

{
finalVariableDemo obVariableDemo=new FinalVariableDemo();
obVariableDemo . showFinalValue();

}
}

Output:
Final variable value:10

Java program which makes use of the keyword final for declaring the method
class Test

{
final void fun() //final keyword used in method

{
System.outprintin("Hello,this function declared using final”);

}
}
class Test1 extends Test

{
final void fun()

{
System.outprintin("Hello,this function declared using final”);

Rohini college of Engineering and technology

17
CS8392 Object Oriented Programming

}
}

Output:
Test.Java:10:fun() in Test1 cannot override fun() in Test;overridden method is final final void
cun() 1 error

Example mentioned above,on execution shows the error. sincefun method is declared with the
keyword final and it cannot be overridden in sub class.
Final Class

If we declare specific class as final,no class can be derived from it.

Example1:Final Class

final class Test

{
void fun()

{
System.outprintln("This is the function of base class”);

}
}

class Test1 extends Test

{
final void fun()

{
System.outprmtin("This is the function of derived class”);

}
}

Output:
Test.java:8 :cannot inherit from final Test
class Test1 extends Test
1 error

Example2:Final Class
class point

{
intx,y;

}

classColoredPoint extends Point

{
int color;

}

final class Colored3dPoint extends ColoredPoint

{
int z;

}

Rohini college of Engineering and technology

18
CS8392 Object Oriented Programming

Class FinalClassDemo

{
public static void main(String args[])

{
Colored3dPoint cObj=new Colored3dPoint();
cObj.z=10;
cObj.color=1;
cObj.x=5;
cObj.y=8;
System.outprmtin("x=”+cObj,x);
System.outprmtin("y=”+cObj,y);
System.outprmtin("z=”+cObj,z);
System.outprmtin("Color=”+cObj,color);

}
}

Output:
x=5
y=8
z=10
Color=1

2.5. INTERFACES
• Java does not support multiple inheritance.
• Classes in java cannot have more than one base class.
• Java gives an alternate method known as interfaces to implement the concept of multiple

inheritance.

2.5.1.Defining interfaces
It is a type of a class but cannot be instantiated the new operator.Like classes,interface will
havefunctions and variables but with a most important differenceInterfaces can have only abstract
functions and final members.It won’t be instantiated/implemented or extended.This means that
interfaces do not identify any code to execute these functions and data membershave only
constants.Therefore, it is the duty of the class that implements an interface to develop the code for
implementation of such functions

Syntax:
interface interfacename

Variables declaration;
Methods declaration;

Interface is a keyword

Variable declaration-static final type variablename=value.
All variables declared as constants
Method declaration-Contains only l ist of methods.

returntypemethodname(parameter_list)

Rohini college of Engineering and technology

19
CS8392 Object Oriented Programming

Example1:
interface Item

{
static final int code=100;
static final String name=fun;
void display();

}
Example2:

interface Area

{
final static float pi=3.14F;
float compute(float x,float y);
void show();

}

2.5.2.Implementing interfaces
Interfaces can be consider as base class.Properties are inherited by classes.

Syntax:

class classname implements interfacename

{
body of class

}

classclassname extends superclass implements interface l,interface2...

{
body of class

}

Example program1:
interface Area

{
final static float pi=3.14F;
float compute(float x,float y);

}

class Rectangle implements Area

{
public float compute(float x,float y)

{
return(x*y);

}
}

class Circle implements Area

{
public float compute(float x,float y)

{
return(pi*x*x);

Rohini college of Engineering and technology

20
CS8392 Object Oriented Programming

}
}

class interfacetest

{
public static void main(String args[])

{
Rectangle rect=new Rectangle();
Circle cr=new Circle();
Area area;
area=rect;
System.outprmtln("Area of Rectangle:”+area.compute(10,20));
Area=cir;
System.outprmtln("Area of Circle:”+area.compute(10,0));

}
}

Output:
Area of Rectangle:200
Area of Circle:314

Implementing multiple and Hybrid inheritance
class student
{
int rollno;
void getno(int no)
{
Rollno=no;
}
Void putno()
{
System.outprmtin("RoHno:”+roHno);
}
}

class Test extends student
{
float mark1,mark2;
void getmarks(float m1,float m2)
{
mark1=m1;
mark2=m2;
}
void putmarks()
{
System.outprmtln("Mark1:”+mark1);
System.outprmtln("Mark2:”+mark2);
}
}

interface sports
{
floatsportwt=6.0F;

Rohini college of Engineering and technology

21
CS8392 Object Oriented Programming

voidputwt();
}

class Results extends test implements sports
{
float total;
public void putwt()
{
System.outprmtin("Sportswt:”+sportwt);
}
void display()
{
total=mark1+mark2;
putno();
putmarks();
putwt();
System.outprmtin("Total Score:”+total);

}
}

class Hybrid

{
public static void main(String args[])

{
Results s1=new Results();
s1.getno(100);
s1.getmarks(50.0F,50.F);
s1.display();

}
}
Output:
Rollno:100
Mark1:50.0
Mark2:50.0
Sportswt:6.0
Total Score:100.0

Example2:
interface interface1

{
public void show_val();

}

class Base

{
int val;

public void set_val(int i)

{
val=i;

}
}

Rohini college of Engineering and technology

22
CS8392 Object Oriented Programming

class A extends Base implements interface1

{
public void show_val()

{
System.outprmtin("The value of a=”+val);

}
}

class B extends Base implements interface1

{
public void show_val()

{
System.outprmtin("The value of b=”+val*5);

}

}

class multipleinherit

{
public static void main(String args[])

{
interface1 obj_A=new A();
interface1 obj_B=new B();
obj_A.set_val(10);
obj_B.set_val(20);
obj_A.show_val();
obj_B.show_val();

}
}
Output:
The value of a=10
The value of b=100

Rohini college of Engineering and technology

23
CS8392 Object Oriented Programming

2.5.3.Difference between class and interface
Class Interface
The class is represented by a keyword class The interface is represented by a keyword

interface
The class consists data members and
methods.But the methods are defined in class
implementation.Thus class consists ofan
executable code

The interfaces may have data members and
methods but the methods will not be defined.The
interface serves as an summarize for the class

With the help of instance of a class ,class members
can be accessed Not possible to create an instance of an instance
The class can use different access specifiers like
public,private or protected The interface will use only public access specifier
The data members of a class can be constant or
final

The data members of interfaces are constantly
declared as final

2.5.4.Difference between abstract class and interface
Abstract Class Interface

The new class can inherit only one abstract class
The class can implement more than one
interfaces

Members of abstract class can have any access
modifier such as public,private and protected.

Members of interface are public by default

The methods in abstract class may or may not
have implementation The methods in interface have no implementation

at all.Only declaration of the methods is given

Java abstract classes are comparatively efficient
The interfaces are comparatively slow and
implies extra level of indirection

Java abstract class is extended using the keyword
abstract

Java interface can be implemented by using the
keyword implements

The member variables of abstract class can be
non final

The member variables of interface are by default
final

2.5.5.Extending interfaces
One interface can able to extend with another one interfaces
The sub interface will take over all the data members of the base interface using 'extends'

keyword
Syntax:

interface name2 extends name1

{
body of name2

}

Rohini college of Engineering and technology

24
CS8392 Object Oriented Programming

2.6.OBJECT CLONING
Object cloning is a new object that has the similar state as the original but a dissimilar identity

Copying
When a replica of a variable is made,the original and the replica are references to the same object.This
means a modify to either variable also affects the otherConsider the below coding:

Employee original=new Employee(‘‘ABC”5000);
Employee copy=original;
copy.raiseSalary(10);

Clone method is used when replica is made to be a new object that starts its life being equal to original
but whose state can differ over time.

//must cast-clone returns an object
Employee copy=(Employee)original.clone();
copy.raiseSalary(10);

Types of cloning

1.Shallow copy
2.Deep copy

Shallow Copy
• It is a bitwise replica of an object.
• It has exact replica of values in the original.
• If any of the fields of the object are references to another object,just the references are

duplicated.
• If the object that is copied holds references to other objects,a shallow copy refers to the similar

subobjects.
Deep Copy

• It is a complete replica copy of an object.
• If an object has references to other objects, total new copies of those objects are also made.
• A deep copy generates a duplicate not only of the primitive values of the original object,but

duplicate of all subobjects as well,all the way to the bottom.
• If you need a true, total copy of the original object,then you will have to to execute a full deep

replica for the object.

• To construct a clone of an object,declare that an object implements cloneable and then give an
override of the clone function of the typical java object super class

Example1:Object Cloning
Import java.util.*;

public class clonetest

{
public static void main(String args[])

{
Employee original=new Employee("ABC”);
original.setHireDay(2000,1,1);
Employee copy=(Employee)original.clone();

Rohini college of Engineering and technology

25
CS8392 Object Oriented Programming

copy.setHireDay(2002,12,31);
System.outprmtln("Origmal:”+original);
System.outprintln("Copy:”+copy);

}
}

class Employee implements cloneable

{
private String name;
private Date hireDay;

public Employee(String n)

{
name=n;

}
public Object clone()

{
try

{
Employee cloned=(Employee)super.clone();
cloned.hireDay=(Date)hireDay.clone();
return cloned;

}
catch(CloneNotSupportedException e)

{
return null;

}
}
public void setHireDay(intyear,intmonth,int day)

{
hireDay=new GC(year,month-1,day).getTime();

}
public String toString()

{
return "Employee[name=”+name+”,hireDay=”+hireDay+”]”;

}

Example2: Object Cloning
public class CloneDemo

{
public static void main(String args[])

{
Person p1=new Person();
p1.setfirstname("Bob”);
p 1 .setlastname ("Roy”);
Person p2=(Person)p1.clone();
System.outprmtin("Person1”);
System.outprmtin("First Name:”+p1.getfirstname());
System.outprmtin("Last N ame: ”+p1.getlastname ());

System.outprmtin("Person2”);
System.outprmtin("First Name:”+p2.getfirstname());

Rohini college of Engineering and technology

26
CS8392 Object Oriented Programming

System.outprmtin("Last Name:”+p2.getlastname());

}
}

class Person implements Cloneable

{
private String firstname;
private String lastname;

public Object clone()

{
Person obj=new Person();
obj.setfirstname(this.firstname);
obj.setlastname(this.lastname);
return obj;

}
public String getfirstname()

{
returnfirstname;

}
public void setfirstname(String firstname)

{
this.firstname=firstname;

}

public String getlastname()

{
returnlastname;

}
public void setlastname(String lastname)

{
this.lastname=lastname;

}
}

Output:
Person1
FirstName:Bob
LastName:Roy

Person2
FirstName:Bob
LastName:Roy

