1.5 LINEARLY INDEPENDENCE AND LINEARLY DEPENDENCE

Linearly dependent set

A subset S of a vector space is called linearly dependent if there is a finite number of distinct vectors $v_1, v_2, ..., v_n$ in S and scalars $\alpha_1, \alpha_2, ...,$ zero such that

$$\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n = 0$$

Linearly independent set

A subset S of a vector space that is not linearly dependent is called independent. i.e., A subset S of a vector space is called linearly independent if there exis. number of distinct vectors $v_1, v_2, ..., v_n$ in S and scalars $\alpha_1, \alpha_2, ..., \alpha_n$ such

$$\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n = 0$$
. Implies $\alpha_1 = \alpha_2 = \dots = \alpha_n = 0$

Note:

- Any set of vectors which contains zero vectors is linearly dependen
- In R^2 any two straight lines which are not parallel are linearly indep
- In R^2 any two straight lines which are parallel are linearly dependen
- In R^2 any three vectors are linearly dependent therefore any set of n in the R^m are linearly dependent if n > m.

Theorem 1.16: {0} is a dependent set Proof: Let V be a vector space over F Let $v_1 = 0$ Therefore $\alpha_1 v_1 = 0 \Rightarrow \alpha_1 \neq 0$ \therefore {0} is linearly dependent.

Theorem 1.17: A singleton non zero vector is linearly independent set

Proof: Let V be a vector space over F

Let $v_1 \neq 0 \in V$

Therefore $\alpha_1 v_1 = 0 \Rightarrow \alpha_1 = 0$

 $\therefore \{v_1\}$ is linearly independent.

Theorem 1.18: Any subset of a linearly independent set is linearly independent.

Proof:

Let V be a vector space over a field F.

Let $S = \{v_1, v_2, ..., v_n\}$ be a linearly independent set.

Let $S_1 = \{v_1, v_2, \dots, v_m\}$ be a subset of *S*, where m < n.

Suppose S_1 is a linearly dependent set. Then there exist $\alpha_1, \alpha_2, \dots, \alpha_m$ in F not all zero, such that

$$\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_m v_m = 0$$

Hence $\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_m v_m + 0 v_{m+1} + \dots + 0 v_n = 0$ with $\alpha_1, \alpha_2, \dots, \alpha_m$ in F not all zero.

Therefore $\{v_1, v_2, ..., v_m, v_{m+1}, ..., v_n\}$ is a linearly dependent set of V i.e., S is a linearly dependent set of V, which is a contradiction.

Therefore S_1 is linearly independent.

Theorem 1.19: Any set containing a linearly dependent set is also linearly dependent

OR

Any super set of a linearly dependent set is linearly dependent set

Proof: Let V a vector space over F.

et S be a linearly dependent set of V...

Then there exits scalar $\alpha_1, \alpha_2, \dots, \alpha_n \in F$ not all zero such that

 $\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n = 0$

now consider the super set $S_1 = \{v_1, v_2, \dots, v_n, v_{n+1}\}$

Then we have $\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n + 0 v_{n+1} = 0$ with at least one $\alpha_i \neq 0$ $\therefore S_1$ is linearly dependent.

Theorem 1.20: A finite set of vectors that contains the zero vector will be linearly dependent.

Proof: Let $S = \{0, v_1, v_2, ..., v_n\}$ be any set of vectors that contains the zero vector. Consider

$$a_1(0) + \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n = 0$$

Which implies $a_1 \neq 0$

Therefore $S = \{0, v_1, v_2, ..., v_n\}$ linearly dependent.

Theorem 1.21: Let $S = \{v_1, v_2, ..., v_n\}$ be a linearly independent set of vectors in

a vector space *V* over a field *F*. Then every element of L(S) can be uniquely written in the form $\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$, where $v_i \in S$ and $\alpha_i \in F$.

Proof: By the definition, every element of L(S) is of the form

$$\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$$

We prove that every element of L(S) can be uniquely written in the form

$$\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$$

If not suppose there is linear combination $\beta_1 v_1 + \beta_2 v_2 + \dots + \beta_n v_n$ of *S* such that

$$\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n = \beta_1 v_1 + \beta_2 v_2 + \dots + \beta_n v_n, \quad \text{where} \quad \beta_i \in F$$

$$\Rightarrow (\alpha_1 - \beta_1) v_1 + (\alpha_2 - \beta_2) v_2 + \dots + (\alpha_n - \beta_n) v_n = 0$$

Since *S* is a linearly independent set, $(\alpha_i - \beta_i) = 0$ for all *i*.

$$\alpha_i - \beta_i = 0$$
 for all i
 $\therefore \alpha_i = \beta_i$ for all i

Hence every element of L(S) can be uniquely written in the form

$$\alpha_1 v_1 + \alpha_2 v_2 + \cdots \dots + \alpha_n v_n$$

Theorem 1.22: A set $S = \{v_1, v_2, ..., v_n\}; n \ge 2$ is a linearly dependent set of vectors in V if and only if there exists a vector $v_k \in S$ such that v_k is a linear combination of the preceding vectors $v_1, v_2, ..., v_{k-1}$.

- **1.** Determine whether the following sets of vectors v₃(**R**) are linearly dependent or linearly independent.
- i. $V_{1=}=(0,2,-4), V_2=(1,-2,-1), V_3=(1,-4,3)$
- ii. $V_{1=}=(1,2,-3), V_{2}=(1,-3,2), V_{3}=(2,-1,5)$
- iii. $V_{1=}=(1,2,3), V_2=(3,1,5), V_3=(3,-4,7)$

Solution:

(i) Let $av_1 + bv_2 + cv_3 = 0$, a, b, c ϵ R

a(0,2,-4)+b(1,-2,-1)+c(1,-4,3)=(0,0,0)

$$\Rightarrow$$
 (0, 2a, -4a)+(b, -2b, -b)+(c, -4c, -3c) =(0, 0, 0)

$$\Rightarrow$$
 (b+c, 2a-2b-4c, -4a-b+3c) =(0.0.0)

b + c = 0(1)

$$a = 0, b = 0, c = 0$$

The given system is linearly independent.

(iii) a(1,2,3)+b(3,1,5)+c(3,-4,7) = (0,0,0)a+3b+3c = 0(1) 2a+b-4c = 0(2) a+5b+7c = 0(3)

Subtracting (3) and (1),

$$2b + 4c = 0$$
(4)

Multiply (1) by (2), 2a +6b+ 6c =0 ...(5)

Subtracting (5) and (2),

5b + 10c =0

b+ 2c = 0(6)

Multiplying (6) by 2,

 $2b + 4c = 0 \dots(7)$

From (4) and (7),

 $B = -2c^{OBSERVE}$ OPTIMIZE OUTSPREAD

Substituting b in (2)

$$2a - 2c - 4c = 0$$

$$2a = 6c$$

a= 3c

The given system is linearly dependent.

2.If $V_1 = (2, -1, 0)$, $V_2 = (1, 2, 1)$ and $V_3 = (0, 2, -1)$. Show V_1 , V_2 , V_3 are linearly independent. Is it possible (3,2,1) as a linear combination of V_1 , V_2 , V_3 .

Solution:

Let
$$av_1+bv_2+cv_3 = 0$$
, a, b, c ϵ F
 $a(2,-1,0)+b(1,2,1)+c(0,2,-1) = (0,0,0)$
 $2a+b=0$ (1)
 $-a+2b+2c = 0$ (2)
 $b-c = 0$ (3)

these equation can be put in the form AX = 0

$$\begin{bmatrix} 2 & 1 & 0 \\ -1 & 2 & 2 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Det A = det
$$\begin{bmatrix} 2 & 1 & 0 \\ -1 & 2 & 2 \\ 0 & 1 & -1 \end{bmatrix}$$
$$= det \begin{bmatrix} 2 & 1 & 0 \\ -1 & 4 & 2 \\ 0 & 0 & -1 \end{bmatrix} C_{1->} C_{2} + C_{3}$$
$$= -det \begin{bmatrix} 2 & 1 \\ -1 & 4 \end{bmatrix} = -9 \neq 0$$

a = b = c = 0

hence the system is linearly independent.

Let $v=a_1v_1+a_2v_2+a_3v_3$ where $a_1, a_2, a_3 \in F$

$$(3,2,1) = a_1(2,-1,0) + a_2(1,2,1) + a_3(0,2,-1)$$

$$(3,2,1) = (2 a_1 + a_2, -a_1 + 2 a_2 + 2 a_3, a_2 - a_3)$$

Comparing

9

Substituting a_2 in (4)

$$3 = 2a_1 + \frac{11}{9}$$
$$2 a_1 = 3 - \frac{11}{9}$$
$$2 a_1 = \frac{27 - 11}{9}$$

$$=>a_1=\frac{16}{2*9}=\frac{8}{9}$$

$$a_1 = \frac{8}{9}, a_2 \frac{11}{9}, a_3 = \frac{2}{9}$$

hence
$$(3,2,1) = \frac{8}{9}(2,-1,0) + \frac{11}{9}(1,2,1) + \frac{2}{9}(0,2,-1)$$

which is the required linear combination.

1. If x,y,z are linearly independent vectors in a vector space V then prove that all linearly independent x+y,x-y,x-2y+2

Solution: Let a, b, $c \in F$ such that A(x+y) + b(x-y) + c(x-2y-z) = 0 $\Rightarrow (a+b+c)x+(a-b-2c)y + cz = 0, x+0, y+0, z$ Comparing $a + b + c = 0 \dots (1)$ $a - b-2c = 0 \dots (2)$,

c=0 (3)

Note:

- 1. Any matrix with distint eigen values can be diagonalizable.
- 2. All matrices donot posses n linearly independent eigen vectors. Therefore all matrices are not diagonalizable.
- 3. Similar matrices have the same eigen values.
- 4. If A is diagonalizable then it has n linearly indebendent eigen vectors.
- 5. Symmetric matrices are always diagonalizable.

6. Let A be a square matirix, A is orthogonally diagonalizable iff it is a symmetric matrix.

Definition:

A square matrix A is said to be orthogonally diagonalizable if there exists an orthogonal matrix N such that $D = N^{T}AN$ is a diagonal matrix.

1.Show that the following matrix $A = \begin{bmatrix} -4 & -6 \\ 3 & 5 \end{bmatrix}$ is diagonalizable hence find A⁹.

Solution:

The characteristic equation I sgiven by $|A - \lambda I| = 0$

(i.e.,)
$$\begin{vmatrix} -4 - \lambda & -6 \\ 5 - \lambda \end{vmatrix} = 0$$
$$=>(-4 - \lambda) (5 - \lambda) - 3(-6) = 0$$
$$=> -20 + 4 \lambda - 5 \lambda + \lambda^2 + 18 = 0$$
$$=> \lambda^2 - \lambda - 2 = 0$$
$$(\lambda + 1)(\lambda - 2) = 0$$
$$\lambda = -1, 2$$

The eigen values are $\lambda = -1, 2$

To find eigen vectors :

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{v} = 0$$
$$\begin{vmatrix} -4 - \lambda & -6 \\ 3 & 5 - \lambda \end{vmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \dots \dots (1)$$

Case (i)

Substituting $\lambda = 2$ in we get

$$\begin{vmatrix} -4-2 & -6 \\ 3 & 5-2 \end{vmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{vmatrix} -6 & -6 \\ 3 & 3 \end{vmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

-6x₁ -6x₂ =0
3x₁ +3x₂ =0 => 3x₁ = -3x₂
=>x₁ = -x₂
Let x₂ = t, then x₁ = t
V₁ = t $\binom{-1}{1}$
Case (ii)
Substituting λ =-1 in we get

$$\begin{vmatrix} -4 + 1 & -6 \\ 3 & 5 + 1 \end{vmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{vmatrix} -3 & -6 \\ 3 & 6 \end{vmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$-3x_1 - 6x_2 = 0$$

3x₁ + 6x₂ =0 => 3x₁ = -6x₂
=>x₁ = -2x₂
Let x₂ = s, then x₁ = -2s
V₂ = s $\binom{-2}{1}$

Since A has two linearly indebendent eigen vectors it is diagonalizable.

Modal matrix is the column vectors of the diagonalizing matrix M.

$$M = \begin{bmatrix} -1 & -2 \\ 1 & 1 \end{bmatrix}$$
$$M^{-1} AM = \begin{bmatrix} -1 & -2 \\ 1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} -4 & -6 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} -1 & -2 \\ 1 & 1 \end{bmatrix}$$

 $M^{-1} = \frac{1}{|M|} (\text{cofactor matrix})^{T}$

$$= \frac{1}{(-1+2)} \begin{bmatrix} -1 & 2\\ 1 & -1 \end{bmatrix}$$
$$= \begin{bmatrix} -1 & 2\\ 1 & -1 \end{bmatrix}$$

Substituting M⁻¹ in (2),

$$M^{-1} AM = \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix}^{-1} \begin{bmatrix} -4 & -6 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} -1 & -2 \\ 1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} -4 + 6 & -6 + 10 \\ 4 - 3 & 6 - 5 \end{bmatrix} \begin{bmatrix} -1 & -2 \\ 1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 4 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} -1 & -2 \\ 1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} -2 + 4 & -4 + 4 \\ -1 + 1 & -2 + 1 \end{bmatrix}$$
$$= \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix} = D$$
$$M^{-1} AM = D \qquad \dots \dots (3)$$

Pre-multiply (3) by M and postmultiply (3) by M^{-1} on both

 $MM^{-1} AM M^{-1} = MDM^{-1}$ $A = MDM^{-1}$ $A^{9} = MD^{9} M^{-1} \qquad (4)$ $D^{9} = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix}^{9} = \begin{bmatrix} 2^{9} & 0 \\ 0 & (-1)^{9} \end{bmatrix}$ $= \begin{bmatrix} 512 & 0 \\ 0 & -1 \end{bmatrix}$

 $A^9 = MD^9 M^{-1}$

$$\begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 512 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ -1 & -1 \end{bmatrix} \\ = \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 512 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -1 & -1 \end{bmatrix} \\ = \begin{bmatrix} -512 + 0 & 0 + 2 \\ 512 + 0 & 0 - 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -1 & -1 \end{bmatrix} \\ = \begin{bmatrix} -514 & +1026 \\ 513 & 1025 \end{bmatrix}$$