1.5 LINEARLY INDEPENDENCE AND LINEARLY DEPENDENCE

Linearly dependent set

A subset S of a vector space is called linearly dependent if there is a finite number of distinct vectors $v_{1}, v_{2}, \ldots, v_{n}$ in S and scalars $\alpha_{1}, \alpha_{2}, \ldots$, zero such that

$$
\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{n} v_{n}=0
$$

Linearly independent set
A subset S of a vector space that is not linearly dependent is called independent. i.e., A subset S of a vector space is called linearly independent if there exis. number of distinct vectors $v_{1}, v_{2}, \ldots, v_{n}$ in S and scalars $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ such

$$
\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{n} v_{n}=0 . \text { Implies } \alpha_{1}=\alpha_{2}=\cdots=\alpha_{n}=0
$$

Note:

- Any set of vectors which contains zero vectors is linearly dependen
- In R^{2} any two straight lines which are not parallel are linearly indep
- In R^{2} any two straight lines which are parallel are linearly dependen
- In R^{2} any three vectors are linearly dependent therefore any set of n in the R^{m} are linearly dependent if $n>m$.

Theorem 1.16: $\{0\}$ is a dependent set
Proof: Let V be a vector space over F
Let $v_{1}=0$
Therefore $\alpha_{1} v_{1}=0 \Rightarrow \alpha_{1} \neq 0$
$\therefore\{0\}$ is linearly dependent.

Theorem 1.17: A singleton non zero vector is linearly independent set

Proof: Let V be a vector space over F
Let $v_{1} \neq 0 \in V$
Therefore $\alpha_{1} v_{1}=0 \Rightarrow \alpha_{1}=0$
$\therefore\left\{v_{1}\right\}$ is linearly independent.

Theorem 1.18: Any subset of a linearly independent set is linearly independent.

Proof:
Let V be a vector space over a field F.
Let $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a linearly independent set.

Let $S_{1}=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ be a subset of S, where $m<n$.

Suppose S_{1} is a linearly dependent set. Then there exist $\alpha_{1}, \alpha_{2}, \ldots \ldots \alpha_{\mathrm{m}}$ in F not all zero, such that

$$
\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{m} v_{m}=0
$$

Hence $\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{m} v_{m}+0 v_{m+1}+\cdots+0 v_{n}=0$ with $\alpha_{1}, \alpha_{2}, \ldots \ldots \alpha_{\mathrm{m}}$ in F
not all zero.

Therefore $\left\{v_{1}, v_{2}, \ldots, v_{m}, v_{m+1}, \ldots, v_{n}\right\}$ is a linearly dependent set of V i.e., S is a linearly dependent set of V, which is a contradiction.

Therefore S_{1} is linearly independent.

Theorem 1.19: Any set containing a linearly dependent set is also linearly dependent

OR
Any super set of a linearly dependent set is linearly dependent set

Proof: Let V a vector space over F.
et S be a linearly dependent set of $V \ldots$

Then there exits scalar $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in F$ not all zero such that

$$
\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{n} v_{n}=0
$$

now consider the super set $S_{1}=\left\{v_{1}, v_{2}, \ldots, v_{n}, v_{n+1}\right\}$
Then we have $\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{n} v_{n}+0 v_{n+1}=0$ with at least one $\alpha_{i} \neq 0$ $\therefore S_{1}$ is linearly dependent.

Theorem 1.20: A finite set of vectors that contains the zero vector will be linearly dependent.

Proof: Let $S=\left\{0, v_{1}, v_{2}, \ldots, v_{n}\right\}$ be any set of vectors that contains the zero vector. Consider

$$
a_{1}(0)+\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{n} v_{n}=0
$$

Which implies $a_{1} \neq 0$
Therefore $S=\left\{0, v_{1}, v_{2}, \ldots, v_{n}\right\}$ linearly dependent.
Theorem 1.21: Let $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a linearly independent set of vectors in
a vector space V over a field F. Then every element of $L(S)$ can be uniquely written in the form $\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{n} v_{n}$, where $v_{i} \in S$ and $\alpha_{i} \in F$.

Proof: By the definition, every element of $L(S)$ is of the form

$$
\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{n} v_{n}
$$

We prove that every element of $L(S)$ can be uniquely written in the form

$$
\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{n} v_{n}
$$

If not suppose there is linear combination $\beta_{1} v_{1}+\beta_{2} v_{2}+\cdots+\beta_{n} v_{n}$ of S such that

$$
\begin{aligned}
& \alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{n} v_{n}=\beta_{1} v_{1}+\beta_{2} v_{2}+\cdots+\beta_{n} v_{n}, \quad \text { where } \quad \beta_{i} \in F \\
& \Rightarrow\left(\alpha_{1}-\beta_{1}\right) v_{1}+\left(\alpha_{2}-\beta_{2}\right) v_{2}+\cdots+\left(\alpha_{n}-\beta_{n}\right) v_{n}=0
\end{aligned}
$$

Since S is a linearly independent set, $\left(\alpha_{i}-\beta_{i}\right)=0$ for all i.

$$
\begin{aligned}
& \alpha_{i}-\beta_{i}=0 \text { for all } i \\
& \therefore \alpha_{i}=\beta_{i} \text { for all } \mathrm{i}
\end{aligned}
$$

Hence every element of $L(S)$ can be uniquely written in the form

$$
\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots \ldots+\alpha_{n} v_{n}
$$

Theorem 1.22: A set $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} ; n \geq 2$ is a linearly dependent set of vectors in V if and only if there exists a vector $v_{k} \in S$ such that v_{k} is a linear combination of the preceding vectors $v_{1}, v_{2}, \ldots, v_{k-1}$.

1. Determine whether the following sets of vectors $v_{3}(R)$ are linearly dependent or linearly independent.
i. $\quad V_{1=}=(0,2,-4), V_{2}=(1,-2,-1), V_{3}=(1,-4,3)$
ii. $V_{1=}=(1,2,-3), V_{2}=(1,-3,2), V_{3}=(2,-1,5)$
iii. $V_{1=}=(1,2,3), V_{2}=(3,1,5), V_{3}=(3,-4,7)$

Solution:
(i) Let $\mathrm{av}_{1}+\mathrm{bv}_{2}+\mathrm{cv}_{3}=0$, a, b, c $\in \mathrm{R}$

$$
\begin{align*}
& \mathrm{a}(0,2,-4)+\mathrm{b}(1,-2,-1)+\mathrm{c}(1,-4,3)=(0,0,0) \\
& \Rightarrow(0,2 \mathrm{a},-4 \mathrm{a})+(\mathrm{b},-2 \mathrm{~b},-\mathrm{b})+(\mathrm{c},-4 \mathrm{c},-3 \mathrm{c})=(0,0,0) \\
& \Rightarrow(\mathrm{b}+\mathrm{c}, 2 \mathrm{a}-2 \mathrm{~b}-4 \mathrm{c},-4 \mathrm{a}-\mathrm{b}+3 \mathrm{c})=(0,0,0) \\
& \mathrm{b}+\mathrm{c}=0 \quad \ldots \ldots \ldots \ldots \ldots(1) \tag{1}
\end{align*}
$$

$2 \mathrm{a}-2 \mathrm{~b}-4 \mathrm{c}=>\mathrm{a}-\mathrm{b}-2 \mathrm{c}=0$

$$
\begin{equation*}
-4 a-b+3 c=0 \tag{2}
\end{equation*}
$$

Subtracting (3) from (2)

$$
5 \mathrm{a}-5 \mathrm{c}=0 \Rightarrow \mathrm{a}=\mathrm{c}
$$

From (1)

$$
b=-c
$$

If we choose $c=k$, then $a=k$ and $b=-k$
Hence the system is linearly dependent
(ii) $\quad \mathrm{a}(1,2,-3)+\mathrm{b}(1,-3,2)+\mathrm{c}(2,-1,5)=(0,0,0)$
$a+b+2 c=0$
$2 \mathrm{a}-3 \mathrm{~b}-\mathrm{c}=0$
$-3 a+2 b+5 c=0$

Multiply (1) by 2,

$$
\begin{equation*}
2 a+2 b+4 c=0 \tag{4}
\end{equation*}
$$

Subtracting (1) and (2),
We get $\quad 5 b+5 c=0$

Multiply (1) by (3),

$$
\begin{equation*}
3 a+3 b+6 c=0 \tag{6}
\end{equation*}
$$

Adding (3) and (6),

$$
\begin{equation*}
5 b=11 c=0 \tag{7}
\end{equation*}
$$

Substituting c=0 in (5)
We get $\quad b=0$
From (1), $\quad \mathrm{a}=0$

$$
a=0, b=0, c=0
$$

The given system is linearly independent.
(iii) $\quad \mathrm{a}(1,2,3)+\mathrm{b}(3,1,5)+\mathrm{c}(3,-4,7)=(0,0,0)$

$$
\begin{align*}
& a+3 b+3 c=0 \tag{1}\\
& 2 a+b-4 c=0 \tag{2}\\
& a+5 b+7 c=0 \tag{3}
\end{align*}
$$

Subtracting (3) and (1),

$$
\begin{equation*}
2 b+4 c=0 \quad \ldots \ldots \ldots(4) \tag{5}
\end{equation*}
$$

Multiply (1) by (2), $2 \mathrm{a}+6 \mathrm{~b}+6 \mathrm{c}=0$

Subtracting (5) and (2),

$$
\begin{align*}
& 5 b+10 c=0 \\
& b+2 c=0 \tag{6}
\end{align*}
$$

Multiplying (6) by 2 ,

$$
\begin{equation*}
2 b+4 c=0 \tag{7}
\end{equation*}
$$

From (4) and (7),

$$
B=-2 c
$$

Substituting b in (2)

$$
\begin{aligned}
& 2 a-2 c-4 c=0 \\
& 2 a=6 c \\
& a=3 c
\end{aligned}
$$

The given system is linearly dependent.
2.If $\mathrm{V}_{1}=(2,-1,0), \mathrm{V}_{2}=(1,2,1)$ and $\mathrm{V}_{3}=(0,2,-1)$. Show $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}$ are linearly independent. Is it possible $(3,2,1)$ as a linear combination of V_{1}, V_{2}, V_{3}.

Solution:

Let $\mathrm{av}_{1}+\mathrm{bv}_{2}+\mathrm{cv}_{3}=0, \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{F}$
$a(2,-1,0)+b(1,2,1)+c(0,2,-1)=(0,0,0)$
$2 \mathrm{a}+\mathrm{b}=0$
$-a+2 b+2 c=0$
$\mathrm{b}-\mathrm{c}=0$
these equation can be put in the form $\mathrm{AX}=0$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
2 & 1 & 0 \\
-1 & 2 & 2 \\
0 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] } \\
& \operatorname{Det} A=\operatorname{det}\left[\begin{array}{ccc}
2 & 1 & 0 \\
-1 & 2 & 2 \\
0 & 1 & -1
\end{array}\right] \\
&=\operatorname{det}\left[\begin{array}{ccc}
2 & 1 & 0 \\
-1 & 4 & 2 \\
0 & 0 & -1
\end{array}\right] \mathrm{C}_{1}->\mathrm{C}_{2}+\mathrm{C}_{3} \\
&=-\operatorname{det}\left[\begin{array}{cc}
2 & 1 \\
-1 & 4
\end{array}\right]=-9 \neq 0
\end{aligned}
$$

$$
\mathrm{a}=\mathrm{b}=\mathrm{c}=0
$$

hence the system is linearly independent.
Let $\quad v=a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3}$ where $a_{1}, a_{2}, a_{3} \in F$

$$
\begin{aligned}
& (3,2,1)=a_{1}(2,-1,0)+a_{2}(1,2,1)+a_{3}(0,2,-1) \\
& (3,2,1)=\left(2 a_{1}+a_{2},-a_{1}+2 a_{2}+2 a_{3}, a_{2}-a_{3}\right)
\end{aligned}
$$

Comparing

$$
\begin{align*}
& 3=2 a_{1}+a_{2} \tag{4}\\
& 2=-a_{1}+2 a_{2}+a_{3} \tag{5}\\
& 1=a_{2}-a_{3} \tag{6}
\end{align*}
$$

Multiplying (5) by 2,

$$
\begin{equation*}
4=2-a_{1}+4 a_{2}+4 a_{3} \tag{7}
\end{equation*}
$$

Adding (4) and (7)

$$
\begin{equation*}
7=5 \mathrm{a}_{2}+4 \mathrm{a}_{3} \tag{8}
\end{equation*}
$$

Multiplying (6) by 5 ,

$$
\begin{equation*}
5=5 \mathrm{a}_{2}+5 \mathrm{a}_{3} \tag{9}
\end{equation*}
$$

Subtracting (8) and (9)

$$
2=9 a_{3} \Rightarrow a_{3}=2 / 9
$$

Substituting a_{3} in (6)

$$
\begin{gathered}
1=\quad a_{2}-2 / 9 \Rightarrow 1+2 / 9 \\
a_{2}=\frac{11}{9}
\end{gathered}
$$

Substituting a_{2} in (4)

$$
\begin{gathered}
3=2 \mathrm{a}_{1}+\frac{11}{9} \\
2 \mathrm{a}_{1}=3-\frac{11}{9} \\
2 \mathrm{a}_{1}=\frac{27-11}{9}
\end{gathered}
$$

$$
\begin{aligned}
& \Rightarrow \mathrm{a}_{1}=\frac{16}{2 * 9}=\frac{8}{9} \\
& \mathrm{a}_{1}=\frac{8}{9}, \mathrm{a}_{2} \frac{11}{9}, \mathrm{a}_{3}=\frac{2}{9}
\end{aligned}
$$

hence $(3,2,1)=\frac{8}{9}(2,-1,0)+\frac{11}{9}(1,2,1)+\frac{2}{9}(0,2,-1)$
which is the required linear combination.

1. If x, y, z are linearly independent vectors in a vector space V then prove that all linearly independent $x+y, x-y, x-2 y+2$

Solution:

Let $\mathrm{a}, \mathrm{b}, \mathrm{c} \epsilon \mathrm{F}$ such that
$\mathrm{A}(\mathrm{x}+\mathrm{y})+\mathrm{b}(\mathrm{x}-\mathrm{y})+\mathrm{c}(\mathrm{x}-2 \mathrm{y}-\mathrm{z})=0$
$\Rightarrow \quad(a+b+c) x+(a-b-2 c) y+c z=0, x+0, y+0, z$
Comparing $a+b+c=0 \ldots$ (1)

$$
\begin{equation*}
a-b-2 c=0 \ldots(2), \tag{3}
\end{equation*}
$$

Note:

1. Any matrix with distint eigen values can be diagonalizable.
2. All matrices donot posses n linearly independent eigen vectors. Therefore all matrices are not diagonalizable.
3. Similar matrices have the same eigen values.
4. If A is diagonalizable then it has n linearly indebendent eigen vectors.
5. Symmetric matrices are always diagonalizable.
6. Let A be a square matirix, A is orthogonally diagonalizable iff it is a symmetric matrix.

Definition:

A square matrix A is said to be orthogonally diagonalizable if there exists an orthogonal matrix N such that $D=N^{T} A N$ is a diagonal matrix.
1.Show that the following matrix $A=\left[\begin{array}{cc}-4 & -6 \\ 3 & 5\end{array}\right]$ is diagonalizable hence find A^{9}.

Solution:

The characteristic equation I sgiven by $|A-\lambda I|=0$

$$
\begin{aligned}
& \text { (i.e.,) }\left|\begin{array}{cc}
-4-\lambda & -6 \\
3 & 5-\lambda
\end{array}\right|=0 \\
& \Rightarrow(-4-\lambda)(5-\lambda)-3(-6)=0 \\
& \Rightarrow-20+4 \lambda-5 \lambda+\lambda^{2}+18=0 \\
& \Rightarrow \lambda^{2}-\lambda-2=0
\end{aligned}
$$

$$
(\lambda+1)(\lambda-2)=0
$$

$$
\lambda=-1,2
$$

The eigen values are $\lambda=-1,2$
To find eigen vectors :

$$
\begin{align*}
& (\mathrm{A}-\lambda \mathrm{I}) \mathrm{v}=0 \\
& \left|\begin{array}{cc}
-4-\lambda & -6 \\
3 & 5-\lambda
\end{array}\right|\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \tag{1}
\end{align*}
$$

Case (i)
Substituting $\lambda=2$ in we get

$$
\left|\begin{array}{cc}
-4-2 & -6 \\
3 & 5-2
\end{array}\right|\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

$$
\begin{aligned}
& \left|\begin{array}{cc}
-6 & -6 \\
3 & 3
\end{array}\right|\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
& =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& -6 \mathrm{x}_{1}-6 \mathrm{x}_{2}=0 \\
& 3 \mathrm{x}_{1}+3 \mathrm{x}_{2}=0
\end{aligned} \begin{aligned}
& \Rightarrow 3 \mathrm{x}_{1}=-3 \mathrm{x}_{2} \\
& \\
& =>\mathrm{x}_{1}=-\mathrm{x}_{2}
\end{aligned}
$$

Let $\mathrm{x}_{2}=\mathrm{t}$, then $\mathrm{x}_{1}=\mathrm{t}$

$$
\mathrm{V}_{1}=\mathrm{t}\binom{-1}{1}
$$

Case (ii)

Substituting $\lambda=-1$ in we get

$$
\begin{aligned}
& \left|\begin{array}{cc}
-4+1 & -6 \\
3 & 5+1
\end{array}\right|\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& \left|\begin{array}{cc}
-3 & -6 \\
3 & 6
\end{array}\right|\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
\end{aligned}=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \text {. } \begin{aligned}
& \mid \mathrm{x}_{1}-6 \mathrm{x}_{2}=0 \\
& 3 \mathrm{x}_{1}+6 \mathrm{x}_{2}=0
\end{aligned} \begin{aligned}
& \Rightarrow 3 \mathrm{x}_{1}=-6 \mathrm{x}_{2} \\
& \\
& \\
& =>\mathrm{x}_{1}=-2 \mathrm{x}_{2}
\end{aligned}
$$

Let $\mathrm{x}_{2}=\mathrm{s}$, then $\mathrm{x}_{1}=-2 \mathrm{~s}$

$$
\mathrm{V}_{2}=\mathrm{s}\binom{-2}{1}
$$

Since A has two linearly indebendent eigen vectors it is diagonalizable.

Modal matrix is the column vectors of the diagonalizing matrix M .

$$
\begin{aligned}
\mathrm{M} & =\left[\begin{array}{cc}
-1 & -2 \\
1 & 1
\end{array}\right] \\
\mathrm{M}^{-1} \mathrm{AM} & =\left[\begin{array}{cc}
-1 & -2 \\
1 & 1
\end{array}\right]-1\left[\begin{array}{cc}
-4 & -6 \\
3 & 5
\end{array}\right]\left[\begin{array}{cc}
-1 & -2 \\
1 & 1
\end{array}\right]
\end{aligned}
$$

$\mathrm{M}^{-1}=\frac{1}{|M|}(\text { cofactor matrix })^{\mathrm{T}}$

$$
\begin{aligned}
& =\frac{1}{(-1+2)}\left[\begin{array}{cc}
-1 & 2 \\
1 & -1
\end{array}\right] \\
& =\left[\begin{array}{cc}
-1 & 2 \\
1 & -1
\end{array}\right]
\end{aligned}
$$

Substituting M^{-1} in (2),
$M^{-1} A M=\left[\begin{array}{cc}-1 & 2 \\ 1 & -1\end{array}\right]-1\left[\begin{array}{cc}-4 & -6 \\ 3 & 5\end{array}\right]\left[\begin{array}{cc}-1 & -2 \\ 1 & 1\end{array}\right]$

$$
=\left[\begin{array}{cc}
-4+6 & -6+10 \\
4-3 & 6-5
\end{array}\right]\left[\begin{array}{cc}
-1 & -2 \\
1 & 1
\end{array}\right]
$$

$$
=\left[\begin{array}{ll}
4 & 4 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
-1 & -2 \\
1 & 1
\end{array}\right]
$$

$$
=\left[\begin{array}{ll}
-2+4 & -4+4 \\
-1+1 & -2+1
\end{array}\right]
$$

$=\left[\begin{array}{cc}2 & 0 \\ 0 & -1\end{array}\right]=\mathrm{D}$
$\mathrm{M}^{-1} \mathrm{AM}=\mathrm{D}$

Pre-multiply (3) by M and postmultiply (3) by M^{-1} on both
$\mathrm{MM}^{-1} \mathrm{AM} \mathrm{M}^{-1}=\mathrm{MDM}^{-1}$

$$
\mathrm{A}=\mathrm{MDM}^{-1}
$$

$$
\begin{equation*}
\mathrm{A}^{9}=\mathrm{MD}^{9} \mathrm{M}^{-1} \tag{4}
\end{equation*}
$$

$$
\begin{aligned}
D^{9}=\left[\begin{array}{cc}
2 & 0 \\
0 & -1
\end{array}\right]^{9} & ==\left[\begin{array}{cc}
2^{9} & 0 \\
0 & (-1)^{9}
\end{array}\right] \\
& ==\left[\begin{array}{cc}
512 & 0 \\
0 & -1
\end{array}\right]
\end{aligned}
$$

$\mathrm{A}^{9}=\mathrm{MD}^{9} \mathrm{M}^{-1}$

$$
\begin{aligned}
& =\left[\begin{array}{cc}
-1 & 2 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
512 & 0 \\
0 & -1
\end{array}\right]=\left[\begin{array}{cc}
-1 & -2 \\
1 & 1
\end{array}\right]^{-1} \\
& =\left[\begin{array}{cc}
-1 & 2 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
512 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
1 & 2 \\
-1 & -1
\end{array}\right] \\
& =\left[\begin{array}{cc}
-512+0 & 0+2 \\
512+0 & 0-1
\end{array}\right]\left[\begin{array}{cc}
1 & 2 \\
-1 & -1
\end{array}\right] \\
& =\left[\begin{array}{cc}
-514 & +1026 \\
513 & 1025
\end{array}\right]
\end{aligned}
$$

