THE RSA ALGORITHM

- Developed in 1977 by Ron Rivest, Adi Shamir, and Len Adleman at MIT and first published in 1978.
- The RSA scheme is a block cipher in which the plaintext and ciphertext are integers between 0 and $\mathrm{n}-1$ for some n .
- A typical size for n is 1024 bits, or 309 decimal digits. That is, n is less than 2^{1024}.

DESCRIPTION OF THE ALGORITHM

- RSA makes use of an expression with exponentials. Plaintext is encrypted in blocks, with each block having a binary value less than some number n.
- That is, the block size must be less than or equal to $\log _{2}(\mathrm{n})+1$; in practice, the block size is i bits, where $2^{i} n \leq 2^{i+1}$.
- Encryption and decryption are of the following form, for some plaintext block M and ciphertext block C
- $\mathrm{C}=\mathrm{M}^{\mathrm{e}} \bmod \mathrm{n}$
- $M=C^{d} \bmod n=\left(M^{e}\right)^{d} \bmod n=M^{\text {ed }} \bmod n$
- Both sender and receiver must know the value of n.
- The sender knows the value of e , and only the receiver knows the value of d .
- Thus, this is a public-key encryption algorithm with a public key of $\mathrm{PU}=\{\mathrm{e}, \mathrm{n}\}$ and a private key of $\mathrm{PR}=\{\mathrm{d}, \mathrm{n}\}$.

REQUIREMENTS

- For this algorithm to be satisfactory for public-key encryption, the following requirements must be met.
- 1. It is possible to find values of e, d, n such that $M^{e d} \bmod n=M$ for all $M<n$.
- 2. It is relatively easy to calculate $\mathrm{M}^{\mathrm{e}} \bmod \mathrm{n}$ and $\mathrm{C}^{\mathrm{d}} \bmod \mathrm{n}$ for all values of $\mathrm{M}<\mathrm{n}$.
- 3. It is infeasible to determine d given e and n.
- Need to find a relationship of the form $M^{\text {ed }} \bmod n=M$
- The preceding relationship holds if e and d are multiplicative inverses modulo $\varphi(\mathrm{n})$, where $\varphi(\mathrm{n})$ is the Euler totient function.
- for p, q prime, $\varphi(p q)=(p-1)(q-1)$.
- The relationship between e and d can be expressed as ed $\bmod \varphi(\mathrm{n})=1$

THE RSA ALGORITHM

Key Generation Alice

Select $p, q \quad p$ and q both prime, $p \neq q$
Calculate $n=p \times q$
Calcuate $\phi(n)=(p-1)(q-1)$

Select integer e	$\operatorname{gcd}(\phi(n), e)=1 ; 1<e<\phi(n)$
Calculate d	$d \equiv e^{-1}(\bmod \phi(n))$
Public key	$P U=\{e, n\}$
Private key	$P R=\{d, n\}$

	Encryption by Bob with Alice's Public Key
Plaintext:	$M<n$
Ciphertext:	$C=M^{e} \bmod n$

Figure 9.5 The RSA Algorithm
Reference :William Stallings, Cryptography and Network Security: Principles and Practice, PHI 3rd Edition, 2006

