THE RSA ALGORITHM

- Developed in 1977 by Ron Rivest, Adi Shamir, and Len Adleman at MIT and first published in 1978.
- The RSA scheme is a block cipher in which the plaintext and ciphertext are integers between 0 and n 1 for some n.
- A typical size for n is 1024 bits, or 309 decimal digits. That is, n is less than 2^{1024} .

DESCRIPTION OF THE ALGORITHM

- RSA makes use of an expression with exponentials. Plaintext is encrypted in blocks, with each block having a binary value less than some number n.
- That is, the block size must be less than or equal to $log_2(n) + 1$; in practice, the block size is i bits, where $2^i n \le 2^{i+1}$.
- Encryption and decryption are of the following form, for some plaintext block M and ciphertext block C
- $C = M^e \mod n$
- $M = C^d \mod n = (M^e)^d \mod n = M^{ed} \mod n$
- Both sender and receiver must know the value of n.
- The sender knows the value of e, and only the receiver knows the value of d.
- Thus, this is a public-key encryption algorithm with a public key of PU = {e, n} and a private key of PR = {d, n}.

REQUIREMENTS

- For this algorithm to be satisfactory for public-key encryption, the following requirements must be met.
- 1. It is possible to find values of e, d, n such that $M^{ed} \mod n = M$ for all M < n.
- 2. It is relatively easy to calculate $M^e \mod n$ and $C^d \mod n$ for all values of M < n.
- 3. It is infeasible to determine d given e and n.
- Need to find a relationship of the form $M^{ed} \mod n = M$
- The preceding relationship holds if e and d are multiplicative inverses modulo $\varphi(n)$, where $\varphi(n)$ is the Euler totient function.
- for p, q prime, $\varphi(pq) = (p 1)(q 1)$.
- The relationship between e and d can be expressed as ed mod $\varphi(n) = 1$

THE RSA ALGORITHM

Key Generation Alice			
	Select <i>p</i> , <i>q</i>	p and q both prime, $p \neq q$	
	<i>Calculate</i> $n = p \times q$		
	Calcuate $\phi(n) = (p-1)(q-1)$		
	Select integer e	$gcd(\phi(n), e) = 1; 1 < e < \phi(n)$	
	Calculate d	$d \equiv e^{-1} \pmod{\phi(n)}$	
	Public key	$PU = \{e, n\}$	
	Private key	$PR = \{d, n\}$	

Encryption by Bob with Alice's Public Key			
Plaintext: Ciphertext:	$M < n$ $C = M^e \mod n$		

	Decryption by Alice with Alice's Public Key		
Ciphertext:		C M Classic	
Plaintext:		$M = C^d \bmod n$	

Figure 9.5 The RSA Algorithm

Reference : William Stallings, Cryptography and Network Security: Principles and Practice, PHI 3rd Edition, 2006

